CS211
Computersand Programming

Lecturel/: Spanning Treesfor Graphs,
Exceptions

Spanning Trees

Undirected Trees

* An undirected graph is a tree If there is
exactly one simple path between any
pair of vertices

Facts About Trees

|[E| =|V[-1
e connected
* NO cycles

In fact, any two of
these properties
Imply the third, and
Imply that the graph
IS a tree

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that Is a tree

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that Is a tree

e Same set of
vertices V

*E'l E
 (V,E") Is atree

Finding a Spanning Tree

A subtractive method

o Start with the whole graph — it is connected

o If there is a cycle, pick
an edge on the cycle,
throw it out — the
graph is still

connected (why?)

e Repeat until no more
cycles

Finding a Spanning Tree

A subtractive method

o Start with the whole graph — it is connected

o If there is a cycle, pick
an edge on the cycle,
throw it out — the
graph is still

connected (why?)

e Repeat until no more
cycles

Finding a Spanning Tree

A subtractive method

o Start with the whole graph — it is connected

o If there is a cycle, pick
an edge on the cycle,
throw it out — the
graph is still

connected (why?)

e Repeat until no more
cycles

Finding a Spanning Tree
An additive method

 Start with no edges — there are no cycles

® o
e |f more than one

connected component, .
insert an edge o .

between them — still o .
no cycles (why?) » . .

* Repeat until only one . . .
component

Finding a Spanning Tree
An additive method

o Start with no edges — there are no cycles

(]
e |f more than one

connected component,
Insert an edge \

between them — still va
no cycles (why?) ﬁ\
* Repeat until only one

component

Finding a Spanning Tree
An additive method

o Start with no edges — there are no cycles

(]
e |f more than one

connected component,
Insert an edge

between them — still va
no cycles (why?) ﬁ\
* Repeat until only one

component

Finding a Spanning Tree
An additive method

o Start with no edges — there are no cycles

 If more than one
connected component,
Insert an edge

between them — still va
no cycles (why?) ﬁ\
* Repeat until only one

component

Finding a Spanning Tree
An additive method

o Start with no edges — there are no cycles

 If more than one
connected component,
Insert an edge

between them — still
no cycles (why?) ﬁ\
* Repeat until only one

component

Finding a Spanning Tree
An additive method

o Start with no edges — there are no cycles

 If more than one
connected component,
Insert an edge

between them — still
no cycles (why?) ﬁ\
* Repeat until only one

component

Minimum Spanning Trees

e Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

routing & other
applications

3 Greedy Algorithms

A. Find a max weight edge — if it Is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge — if it Is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge — if it Is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge — if it Is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge — if it Is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge — if it Is on a cycle,
throw it out, otherwise keep it

54

3 Greedy Algorithms

A. Find a max weight edge — if it Is on a cycle,
throw it out, otherwise keep it

54

3 Greedy Algorithms

A. Find a max weight edge — if it Is on a cycle,
throw it out, otherwise keep it

54

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's *
algorithm * v

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's *
algorithm * v

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's *
algorithm * v

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's *
algorithm < v .

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's *
algorithm < v .

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's A \j *
algorithm 4 v .

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

54

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

@ o
® [
Prim's algorithm °
(reminiscent of . [=T
Dijkstra's algorithm) 7
° » °

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

@ o
® [
Prim's algorithm °
(reminiscent of 4 [=T
Dijkstra's algorithm) 7
° » °

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm °

(reminiscent of : Vi
Dijkstra's algorithm) \\ . 7
o

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

@ o
[
Prim's algorithm A *
(reminiscent of 4 [=T
Dijkstra's algorithm) 6 . . 7

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm °
(reminiscent of 4
Dijkstra's algorithm)

10

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

54

3 Greedy Algorithms

All 3 greedy algorithms give the same minimum
spanning tree (assuming distinct edge weights)

54

Analysis?

How fast do these algorithms run?
Why are they correct?
Which is the easiest to implement?

We'll examine these guestions more
closely next week.

Exceptions

Runtime Exceptions

Exceptions are usually thrown to indicate
that something bad happened

e | CExcept i on on failure to open or read a file
 Cl assCast Except i on if attempted to cast an

object to a type that is not a supertype of the
dynamic type of the object
 Nul | Poi nt er Excepti on if tried to

dereference nul |
 Arrayl ndexQut O BoundsExcept i on if tried

to access an array element at index 1 <0 or 3
the length of the array

Runtime Exceptions

o Exceptions can be caught by the program using a

try/ cat ch block
e cat ch clauses are called exception handlers

| nteger x = nul|;
try {
X = (Integer)y;
Systemout. println(x.intValue());
} catch (O assCast Exception e) {
Systemout.printin("y was not an Integer");
} catch (Null Poi nterException e) {
Systemout.println("y was null");

}

Runtime Exceptions

You can define your own exceptions and
throw them

cl ass MyOmException extends Exception {}

I f (input == null) {
t hrow new MyOwnException();
}

Runtime Exceptions

Any exception you throw must either be
caught or declared in the method header

void foo(int input) throws MyOwmException {
I f (input == null) {
t hrow new MyOmExcepti on();
}

}

 Note: t hr ows means "can throw", not "does throw"

e SOMe common exceptions do not have to be
declared (e.g., Nul | Poi nt er Except i on,

Cl assCast Excepti on)

How EXxceptions are Handled

« If the exception is thrown from inside a try/catch block
with a handler for that exception (or a superclass of the
exception), then that handler is executed

* Otherwise, the method terminates abruptly and control
IS passed back to the calling method

o If the calling method can handle the exception (i.e., If
the call occurred within a try/catch block with a handler
for that exception), then that handler is executed

* Otherwise, the calling method terminates abruptly, etc.

* If none of the calling methods handle the exception,
the entire program terminates with an error message

Checking Class Casts

Two ways to check if a class cast will succeed:
e use i nst anceof
e just do it, and catch the exception If it fails

| nteger x = null;
I f (y i nstanceof Integer) {
X = (Integer)y,;
} else {
Systemout.printin("y was not an Integer");

}

| nteger x = null;

try {
| nteger x = (Integer)y;

} catch (d assCast Exception e) {
Systemout.printin("y was not an Integer");

}

