
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 17: Spanning Trees for Graphs;
Exceptions

Spanning Trees

Undirected Trees

• An undirected graph is a tree if there is
exactly one simple path between any
pair of vertices

Facts About Trees

• |E| = |V| – 1
• connected
• no cycles

In fact, any two of
these properties
imply the third, and
imply that the graph
is a tree

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

• Same set of
vertices V

• E' ⊆ E

• (V,E') is a tree

Finding a Spanning Tree

A subtractive method

• If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

• Repeat until no more
cycles

• Start with the whole graph – it is connected

• If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

• Repeat until no more
cycles

• Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method

• If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

• Repeat until no more
cycles

• Start with the whole graph – it is connected

Finding a Spanning Tree

A subtractive method

An additive method

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

Minimum Spanning Trees

• Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

• Useful in network
routing & other
applications

10

14

16

3 Greedy Algorithms

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

1

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

4

13

9

6

7

21

15

1

2

5

22 24

8
25

54

11

12

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

4

13

9

6

7

15

1

2

5
8

25

54

11

12

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

14

4
9

6

7

1

2

5
8

25

54

11

12
10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

16

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

16

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

3 Greedy Algorithms

14

4
9

6

7

1

2

5
8

25

54

11

12
10

All 3 greedy algorithms give the same minimum
spanning tree (assuming distinct edge weights)

16

Analysis?

• How fast do these algorithms run?
• Why are they correct?
• Which is the easiest to implement?

• We’ll examine these questions more
closely next week.

Exceptions

Runtime Exceptions
Exceptions are usually thrown to indicate
that something bad happened
•IOException on failure to open or read a file
•ClassCastException if attempted to cast an

object to a type that is not a supertype of the
dynamic type of the object

•NullPointerException if tried to
dereference null

•ArrayIndexOutOfBoundsException if tried
to access an array element at index i < 0 or ≥
the length of the array

Runtime Exceptions
• Exceptions can be caught by the program using a
try/catch block

•catch clauses are called exception handlers

Integer x = null;
try {

x = (Integer)y;
System.out.println(x.intValue());

} catch (ClassCastException e) {
System.out.println("y was not an Integer");

} catch (NullPointerException e) {
System.out.println("y was null");

}

Runtime Exceptions
You can define your own exceptions and
throw them

class MyOwnException extends Exception {}

...

if (input == null) {
throw new MyOwnException();

}

Runtime Exceptions
Any exception you throw must either be
caught or declared in the method header
void foo(int input) throws MyOwnException {

if (input == null) {
throw new MyOwnException();

}
...

}

• Note: throws means "can throw", not "does throw"
• some common exceptions do not have to be

declared (e.g., NullPointerException,
ClassCastException)

How Exceptions are Handled

• If the exception is thrown from inside a try/catch block
with a handler for that exception (or a superclass of the
exception), then that handler is executed

• Otherwise, the method terminates abruptly and control
is passed back to the calling method

• If the calling method can handle the exception (i.e., if
the call occurred within a try/catch block with a handler
for that exception), then that handler is executed

• Otherwise, the calling method terminates abruptly, etc.
• If none of the calling methods handle the exception,

the entire program terminates with an error message

Checking Class Casts
Two ways to check if a class cast will succeed:

• use instanceof
• just do it, and catch the exception if it fails

Integer x = null;
if (y instanceof Integer) {

x = (Integer)y;
} else {

System.out.println("y was not an Integer");
}

Integer x = null;
try {

Integer x = (Integer)y;
} catch (ClassCastException e) {

System.out.println("y was not an Integer");
}

