
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 16: Graphs and Graph Algorithms

Announcements

• Assignment 3 Written handed back now
• Quiz 3 & 4 solutions up later today
• Quizzes handed back tomorrow
• Assignment 4 Written/Programming due tomorrow
• Prelim 2 in class on Wednesday
• Reading for today: Weiss 14.1 - 14.3

This is not a Graph

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

...not the kind we mean, anyway

These are Graphs

K5 K3,3

=

Applications of Graphs

• Communication networks
• Routing and shortest path problems
• Commodity distribution (flow)
• Traffic control
• Resource allocation
• Geometric modeling
• ...

Graph Definitions

A directed graph (or digraph) is a pair (V,E) where
– V is a set
– E is a set of ordered pairs (u,v), where u,v∈V
– usually require u ≠ v (no self-loops)

An element of V is called a vertex (pl. vertices) or
node

An element of E is called an edge or arc

|V| = size of V, often denoted n
|E| = size of E, often denoted m

Graph Definitions

Example:

V = {a,b,c,d,e,f }
E = {(a,b), (a,c), (a,e), (b,c), (b,d), (b,e), (c,d),

(c,f), (d,e), (d,f), (e,f)}

|V| = 6, |E| = 11

b

a

c
d

e
f

b

a

c

e

d

Graph Definitions

An undirected graph is just like a directed graph,
except the edges are unordered pairs (sets) {u,v}

Example:

f

V = {a,b,c,d,e,f }
E = {{a,b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,f },

{d,e}, {d,f }, {e,f }}

More Graph Definitions

• the vertices u and v are called the source and
sink of the directed edge (u,v), respectively

• u and v are called the endpoints of (u,v)
• two vertices are adjacent if they are connected

by an edge
• the outdegree of a vertex u in a directed graph is

the number of edges of which u is the source
• the indegree of a vertex v is in a directed graph is

the number of edges of which v is the sink
• the degree of a vertex u in an undirected graph is

the number of edges of which u is an endpoint

More Graph Definitions
• a path is a sequence u0,u1,u2,...,un of vertices

such that (ui,ui+1) ∈ E, 0 ≤ i ≤ n – 1

• the length of the path is the number of edges in it
(in this example, n – 1)

• a path is simple if it does not repeat any vertices
• a cycle is a path u0,u1,u2,...,un such that u0 = un
• a cycle is simple if it does not repeat any vertices

except the first and last
• a graph is acyclic if it has no cycles
• a directed acyclic graph is called a dag

u0

un

More Graph Definitions
Q) Is this a dag?

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions
Q) Is this a dag?

A) yes – if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

Topological Sort
Just computed a topological sort of the dag

• a numbering of the vertices such that all edges
go from lower- to higher-numbered vertices

Useful in job scheduling with precedence constraints

0

1

2

3

4
5

Graph Coloring

A coloring of an undirected graph is an assignment
of a color to each node such that no two adjacent
vertices get the same color

Q) How many colors are needed to color this graph?

A coloring of an undirected graph is an assignment
of a color to each node such that no two adjacent
vertices get the same color

Q) How many colors are needed to color this graph?
A) 3

Graph Coloring

An Application of Coloring
• Vertices are jobs
• Edge (u,v) is present if jobs u and v each require

access to the same shared resource, thus cannot
execute simultaneously

• Colors are time slots to schedule the jobs
• Minimum number of colors needed to color the

graph = minimum number of time slots required

Planarity

A graph is planar if it can be embedded in the
plane with no edges crossing

Q) Is this graph planar?

A graph is planar if it can be embedded in the
plane with no edges crossing

Q) Is this graph planar?
A) yes

Planarity

A graph is planar if it can be embedded in the
plane with no edges crossing

Q) Is this graph planar?
A) yes

Planarity

Kuratowski's Theorem

A graph is planar if and only if it does not contain a
copy of K5 or K3,3 (possibly with other nodes along
the edges shown)

Planarity

K3,3K5

Every planar graph
is 4-colorable

(Appel & Haken, 1976)

The
Four-Color

Theorem

Bipartite Graphs

A directed or undirected graph is bipartite if
the vertices can be partitioned into two sets
such that all edges go between the two
sets

The following are equivalent:
– G is bipartite
– G is 2-colorable
– G has no cycles of odd length

Bipartite Graphs

Amsterdam

Rome

Boston

Atlanta

London

Paris

Copenhagen

Munich

Ithaca

New York

Washington

1202

1380

1214

1322

1356

Find a path of minimum distance that visits every city

1002

512

216

441

189
160

15561323

419

210

224 132

660 505

1078

Traveling Salesperson

2 3

2 4

3

1

2

3

4

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 0

1 2 3 4

1

2

3

4

Representations of Graphs

Adjacency List Adjacency Matrix

1 2

34

Graph Algorithms

• Search
– depth-first search
– breadth-first search

• Shortest paths
– Dijkstra's algorithm

• Minimum spanning trees
– Prim's algorithm
– Kruskal's algorithm

Depth-First Search

• Follow edges depth-first starting from an
arbitrary vertex r, using a stack to
remember where you came from

• When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

• Eventually visit all vertices reachable from r
• If there are still unvisited vertices, repeat
• O(m) time

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Breadth-First Search

• Same, except use a queue instead of a
stack to determine which edge to explore
next

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Shortest Paths

Suppose you have a USAir route map with
intercity distances. You want to know the
shortest distance from Ithaca to every city
served by USAir.

This is known as the single-source shortest
path problem.

1 2 3 4

1

2

3

4

0 2.4 ∞ 1.5

∞ 0 0.9 ∞

∞ ∞ 0 ∞

∞ 0.1 3.1 0

s = 1 2

34

Shortest Paths

2.4

0.91.5

3.1

0.1

Digraph with
edge weights

Corresponding
matrix

Single-source shortest path problem: Given a graph
with edge weights w(u,v) and a designated vertex s,
find the shortest path from s to every other vertex
(length of a path = sum of edge weights)

s = 1 2

34

Shortest Paths

2.4

0.91.5

3.1

0.1

• Let d(s,u) denote the distance (length of shortest
path) from s to u. In this example,

– d(1,1) = 0

– d(1,2) = 1.6

– d(1,3) = 2.5

– d(1,4) = 1.5

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Let X = {s}

– X is the set of nodes for which we have already
determined the shortest path

• For each node u ∉ X, define D(u) = w(s,u)
– D(2) = 2.4
– D(3) = ∞
– D(4) = 1.5

X

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u)

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4
– D(3) = ∞
– D(4) = 1.5

X

4

1 2

3

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 4

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4
– D(3) = ∞
– D(4) = 1.5 = d(1,4)

X

4

1 2

3

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 4

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6
– D(3) = ∞ 4.6
– D(4) = 1.5 = d(1,4)

X

4

1 2

3

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u)

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6
– D(3) = ∞ 4.6
– D(4) = 1.5 = d(1,4)

X

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 2

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6 = d(1,2)
– D(3) = ∞ 4.6
– D(4) = 1.5 = d(1,4)

X

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 2

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6 = d(1,2)
– D(3) = ∞ 4.6 2.5
– D(4) = 1.5 = d(1,4)

X

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u)

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6 = d(1,2)
– D(3) = ∞ 4.6 2.5
– D(4) = 1.5 = d(1,4)

X

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 3

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6 = d(1,2)
– D(3) = ∞ 4.6 2.5 = d(1,3)
– D(4) = 1.5 = d(1,4)

X

Proof of correctness – show that the
following are invariants of the loop:

• For u ∈ X, D(u) = d(s,u)
• For u ∈ X and v ∉ X, d(s,u) ≤ d(s,v)
• For all u, D(u) is the length of the shortest

path from s to u such that all nodes on the
path (except possibly u) are in X

Implementation:
• Use a priority queue for the nodes not yet

taken – priority is D(u)

Dijkstra's Algorithm

Complexity
• Every edge is examined once when its source is

taken into X

• A vertex may be placed in the priority queue
multiple times, but at most once for each
incoming edge

• Number of insertions and deletions into priority
queue = m + 1, where m = |E|

• Total complexity = O(m log m)

Conclusion

• There are faster but much more complicated
algorithms for single-source, shortest-path
problem that run in time O(n log n + m) using
something called Fibonacci heaps

• It is important that all edge weights be
nonnegative – Dijkstra's algorithm does not work
otherwise, we need a more complicated algorithm
called Warshall's algorithm

• Learn about this and more in CS482

