CS211
Computersand Programming

L ecture 16: Graphsand Graph Algorithms

Announcements

Assignment 3 Written handed back now

Quiz 3 & 4 solutions up later today

Quizzes handed back tomorrow

Assignment 4 Written/Programming due tomorrow
Prelim 2 in class on Wednesday

Reading for today: Weiss 14.1 - 14.3

This Is not a Graph

90+
80+
70+
60

[East
B West
[0 North

50+
40
30+

AN

20+
10-
O_

AN

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

...not the kind we mean, anyway

Applications of Graphs

« Communication networks

* Routing and shortest path problems
« Commodity distribution (flow)

* Traffic control

 Resource allocation

 Geometric modeling

Graph Definitions

A directed graph (or digraph) is a pair (V,E) where
—V Is a set
—E is a set of ordered pairs (u,v), where u,vl V
—usually require u * v (no self-loops)

An element of V is called a vertex (pl. vertices) or
node

An element of E is called an edge or arc

|V| = size of V, often denoted n
|E| = size of E, often denoted m

Graph Definitions

b

Example: d
2 f

V ={a,b,c,d,e,f}
E ={(a,b), (a,c), (a,e), (b,c), (b,d), (b.e), (c,d),

(c.0), (d.e), (d.0), (e.N)}

V| = 6, |E| = 11

Graph Definitions

An undirected graph is just like a directed graph,
except the edges are unordered pairs (sets) {u,v}

Example: |
A

V ={a,b,c,d,e,f} e
E ={{a.b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c.d}, {c,f},
{d,e}, {d.T}, {e,f}}

More Graph Definitions

 the vertices u and v are called the source and
sink of the directed edge (u,v), respectively

* U and v are called the endpoints of (u,v)

* two vertices are adjacent If they are connected
by an edge

 the outdegree of a vertex u in a directed graph is
the number of edges of which u is the source

 the indegree of a vertex v is in a directed graph is
the number of edges of which v is the sink

 the degree of a vertex u in an undirected graph is
the number of edges of which u is an endpoint

More Graph Definitions

 a path is a sequence u,,U,,U,,...,u, of vertices
such that (u,u,;) 1 E,O0£I£n-1

un
uO

 the length of the path is the number of edges in it
(in this example, n — 1)

e a path is simple if it does not repeat any vertices

e a cycle is a path ug,u,,U,,...,u, such that u, = u,

e a cycle is simple if it does not repeat any vertices
except the first and last

e a graph is acyclic if it has no cycles

a directed acyclic graph is called a dag

More Graph Definitions

Q) Is this a dag?

A

More Graph Definitions

Q) Is this a dag?

A

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

A

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

A

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

A

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

!

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

L

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

/X

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

L\

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

—"°

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

—""°

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

More Graph Definitions

Q) Is this a dag?

A) yes — if and only if you can iteratively
eliminate vertices of indegree 0 and get
all the way through the graph

Topological Sort

Just computed a topological sort of the dag
e a numbering of the vertices such that all edges
go from lower- to higher-numbered vertices

1

4

Useful in job scheduling with precedence constraints

Graph Coloring

A coloring of an undirected graph is an assignment
of a color to each node such that no two adjacent
vertices get the same color

Q) How many colors are needed to color this graph?

Graph Coloring

A coloring of an undirected graph is an assignment
of a color to each node such that no two adjacent
vertices get the same color

Q) How many colors are needed to color this graph?
A) 3

An Application of Coloring

* Vertices are jobs

 Edge (u,v) Is present if jobs u and v each require
access to the same shared resource, thus cannot
execute simultaneously

e Colors are time slots to schedule the jobs

 Minimum number of colors needed to color the
graph = minimum number of time slots required

Planarity

A graph is planar if it can be embedded in the
plane with no edges crossing

Q) Is this graph planar?

Planarity

A graph is planar if it can be embedded in the
plane with no edges crossing

Q) Is this graph planar?
A) yes

Planarity

A graph is planar if it can be embedded in the
plane with no edges crossing

Q) Is this graph planar?
A) yes

Planarity

Kuratowski's Theorem

Wy, =

A graph is planar if and only if it does not contain a
copy of Ky or K; 5 (possibly with other nodes along
the edges shown)

The
Four-Color
Theorem

Every planar graph

IS 4-colorable
(Appel & Haken, 1976)

50 Kiometers:
e e
o 50 Miss \j
i
indepancant state, but this boen farmally.
el
1 =

Central Balkan Reg i__on

BBBBBB

/‘\ nto
1:3,550, 0
Lambert Canformal Confe Projection,
standard paraliels 40 N and 56 N
- P

Bipartite Graphs

A directed or undirected graph is bipartite If
the vertices can be partitioned into two sets
such that all edges go between the two
sets

Bipartite Graphs

The following are equivalent:
— G Is bipartite
— G Is 2-colorable
— G has no cycles of odd length

Traveling Salesperson

Find a path of minimum distance that visits every city

Representations of Graphs

Adjacency List Adjacency Matrix
1o e1+—p|2 e1+—p|4 1 2 3 4

A 4 1 0 1 0 1
2 ¢ o+—p| 3

2 0 0 1 0

4
3) 3 0 0 0 0

¢ 41of1]1]o0
4 e+—p|2 e1+—»| 3

Graph Algorithms

e Search
— depth-first search
— breadth-first search

e Shortest paths
— Dijkstra's algorithm

e Minimum spanning trees
—Prim's algorithm
— Kruskal's algorithm

Depth-First Search

 Follow edges depth-first starting from an
arbitrary vertex r, using a stack to
remember where you came from

 When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

e Eventually visit all vertices reachable from r

o If there are still unvisited vertices, repeat

e O(m) time

Depth-First Search

A

Depth-First Search

A

Depth-First Search

v

Depth-First Search

B

Depth-First Search

B

Depth-First Search

A

Depth-First Search

=7

Depth-First Search

=7\

Depth-First Search

=7

Depth-First Search

=7,

Depth-First Search

7.

Depth-First Search

7.

Depth-First Search

K

Depth-First Search

K

Depth-First Search

K

Depth-First Search

S

Depth-First Search

L

Depth-First Search

o

Depth-First Search

o

Depth-First Search

o

Depth-First Search

S

Depth-First Search

S

Depth-First Search

A

Depth-First Search

v

Depth-First Search

A

Depth-First Search

A

Breadth-First Search

e Same, except use a queue instead of a
stack to determine which edge to explore
next

Breadth-First Search

A

Breadth-First Search

A

Breadth-First Search

A

Breadth-First Search

A

Breadth-First Search

A

Breadth-First Search

A7

Breadth-First Search

A7

Breadth-First Search

A7

Breadth-First Search

A

Breadth-First Search

o

Breadth-First Search

S

Breadth-First Search

v

Breadth-First Search

A

Breadth-First Search

A

Breadth-First Search

A

Shortest Paths

Suppose you have a USAIr route map with
Intercity distances. You want to know the

shortest distance from Ithaca to every city

served by USAIr.

This is known as the single-source shortest
path problem.

Shortest Paths

1 2 3 4

2.4 5

s=1 = 1o l2aly |15
1. 50. 9 2 ¥ 0 O. 9 ¥
4 31 3 3l |l¥|o|l ¥
4 ¥ [0.113.1]1 0
Digraph with Corresponding
edge weights matrix

Single-source shortest path problem: Given a graph
with edge weights w(u,v) and a designated vertex s,
find the shortest path from s to every other vertex
(length of a path = sum of edge weights)

Shortest Paths

 Let d(s,u) denote the distance (length of shortest
path) from s to u. In this example,
—-d(1,1) =0
—-d(1,2)=1.6
—d(1,3)=25
—~d(1,4) =15

Dijkstra's Algorithm

X
2.4 5

0.9
1.5 5 1

431 >3

e Let X ={s}

— X is the set of nodes for which we have already
determined the shortest path

« For each node ul X, define D(u) = w(s,u)
~D(2)=24
- D@B)=¥
—D@)=15

Dijkstra's Algorithm

e Find ul X such that D(u) is minimum, add it to X
— at that point, d(s,u) = D(u)

e For each node vi X such that (u,v) 1 E,
If D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,Vv)
~D(2)=24
—D(3)= ¥
—~D(@4)=1.5

Dijkstra's Algorithm

e Find ul X such that D(u) is minimum, add it to X
— at that point, d(s,u) =D(u) u=4

e For each node vi X such that (u,v) 1 E,
If D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,Vv)
~D(2)=24
—D(3)= ¥
— D(4)=15=d(1,4)

Dijkstra's Algorithm

e Find ul X such that D(u) is minimum, add it to X
— at that point, d(s,u) =D(u) u=4

e For each node vi X such that (u,v) 1 E,
If D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,Vv)
-D@2)=24 16

~DB3)=X 46
— D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm

e Find ul X such that D(u) is minimum, add it to X
— at that point, d(s,u) = D(u)

e For each node vi X such that (u,v) 1 E,
If D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,Vv)
-D(@2)=24 1.6

—DB3) =X 46
— D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm

e Find ul X such that D(u) is minimum, add it to X
— at that point, d(s,u) =D(u) u=2

e For each node vi X such that (u,v) 1 E,
If D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,Vv)
-D(@2)=2<4 1.6=d(1,2)

—DB3) =X 46
— D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm

e Find ul X such that D(u) is minimum, add it to X
— at that point, d(s,u) =D(u) u=2

e For each node vi X such that (u,v) 1 E,
If D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,Vv)
-D(@2)=2<4 1.6=d(1,2)

—DE) =X #6 2.5
— D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm

e Find ul X such that D(u) is minimum, add it to X
— at that point, d(s,u) = D(u)

e For each node vi X such that (u,v) 1 E,
If D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,Vv)
-D(@2)=2<4 1.6=d(1,2)

—DE) =X 3§ 2.5
— D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm

e Find ul X such that D(u) is minimum, add it to X
— at that point, d(s,u) =D(u) u=3

e For each node vi X such that (u,v) 1 E,
If D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,Vv)
-D(@2)=2<4 1.6=d(1,2)

—DE) =X ¥§ 2.5=d(1,3)
— D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm

Proof of correctness — show that the

following are invariants of the loop:
e« Forul X, D(u) = d(s,u)
e Forul Xandvi X, d(s,u) £d(s,v)
e For all u, D(u) is the length of the shortest
path from s to u such that all nodes on the
path (except possibly u) are in X

Implementation:
« Use a priority queue for the nodes not yet
taken — priority is D(u)

Complexity

e Every edge is examined once when its source is
taken into X

» A vertex may be placed in the priority queue
multiple times, but at most once for each
Incoming edge

 Number of insertions and deletions into priority
queue =m + 1, where m = |E]

e Total complexity = O(m log m)

Conclusion

* There are faster but much more complicated
algorithms for single-source, shortest-path
problem that run in time O(n log n + m) using
something called Fibonacci heaps

e It is important that all edge weights be
nonnegative — Dijkstra's algorithm does not work
otherwise, we need a more complicated algorithm
called Warshall's algorithm

e Learn about this and more in CS482

