CS211
Computersand Programming

L ecture 15: Priority Queues and Heaps

Announcements

Assignment 4 Programming IS up

Assignment 4 Written coming soon

Both due Tuesday at 10am

Quiz Tomorrow on Complexity, Iterators, and ADTSs
Discussion of Java 5 Generics tomorrow

Reading for today: Weiss 21.1 - 21.5

The Bag Interface

| nterface Bag<E> {
voi d put (E obj);
E get(); //extract sone el enent
bool ean 1 sEnpty();

Examples: Stack, Queue

Stacks and Queues as Lists

e Stack (LIFO) implemented as list
— put (), get () from front of list

* Queue (FIFO) implemented as list
— put () on back of list, get () from front of list

« All Bag operations are O(1)

firste—»/55 e1—»[120 o119 o+ 16

//V

laste

Priority Queue

e A Bag in which data items are Conpar abl e

* lesser elements (as determined by
conmpar eTo()) have higher priority

e get () returns the element with the highest
priority = least in the conpar eTo() ordering

 break ties arbitrarily

Examples

e Scheduling jobs to run on a computer
— default priority = arrival time
— priority can be changed by operator

e Scheduling events to be processed by an
event handler
— priority = time of occurrence
* Airline check-in
— first class, business class, coach
— FIFO within each class

Priority Queues

| nt erface Bag<E> {
voi d put (E obj);
E get(); //extract sone el ement
bool ean 1 sEmpty();

I nterface PriorityQueue<E extends Conparabl e>
ext ends Bag<E> {}

Priority Queues as Lists

* Maintain as unordered list
— put () puts new element at front — O(1)
— get () must search the list — O(n)

e Maintain as ordered list
— put () must search the list — O(n)
— get () gets element at front — O(1)

* In either case, O(n?) to process n elements

Can we do better?

Important Special Case

e Fixed number of priority levels O,...,p — 1
e FIFO within each level
 Example: airline check-in

e put () —Insert in appropriate queue — O(1)
e get () — must find a nonempty queue — O(p)

Heaps

e A heap Is a concrete data structure that can
be used to implement priority gueues
» Gives better complexity than either ordered

or unordered list implementation:
— put (), get () —O(log n)
— 1 sEnpty() —0O(1)
* O(n log n) to process n elements
* Do not confuse with heap memory, where
the Java virtual machine allocates space for

objects — different usage!

Heaps

 Binary tree with data at each node
 Satisfies the Heap Order Invariant:

The least (highest priority)
element of any subtree Is found
at the root of that subtree

least element of any subtree
IS always found at the root

of that subtree

21

22

38

55

10

14

19 35

T

20

T~

but it is possible to have
smaller elements deeper
In the tree!

Examples of Heaps

» Ages of people in family tree
— parent is always older than children, but you can
have an uncle who Is younger than you

» Salaries of employees of a company
— bosses generally make more than subordinates,
but a VP In one subdivision may make less than a
Project Supervisor in a different subdivision

Balanced Heaps

Two restrictions:

1. Any node of depth < d — 1 has exactly 2

children, where d is the height of the tree

— Implies that any two maximal paths (path from
a root to a leaf) are of length d or d — 1, and
the tree has at least 29 nodes

2. All maximal paths of length d are to the left
of those of lengthd — 1

A Balanced Heap

21

4

22

38

25

10

19

20

14

35

I
w

Store In an Array or Vector

e Elements of the heap are stored in the array
In order, going across each level from left to
right, top to bottom

* The children of the node at array index n are
found at 2n + 1 and 2n + 2

* The parent of node nis found at (n — 1)/2

Store In an Array or Vector

4

22

38

25

10

10

0

14 |2

20 11

children of node n are found at 2n + 1 and 2n + 2

put ()

 Put the new element at the end of the array

o |f this violates heap order because it Is
smaller than its parent, swap it with Iits parent

e Continue swapping it up until it finds its
rightful place

 The heap Iinvariant is maintained!

21

put ()

22

38

25

10

19

20

14

35

21

put ()

19

14

22

38

25

10

20

35

21

put ()

14

22

38

25

10

20

19

35

21

14

22

38

25

10

20

19

35

21

14

22

38

25

10

20

19

35

21

14

35

22

38

25

10

20

19

21

14

22

38

25

10

20

19

35

21

14

22

38

25

10

20

19

35

21

14

22

38

25

10

20

19

35

21

14

22

38

25

10

20

19

35

put ()

 Time is O(log n), since the tree is balanced
— Size of tree Is exponential as a function of depth
— depth of tree is logarithmic as a function of size

put ()

cl ass PQ<E extends Conparabl e> extends java. util. Vector<E>
I npl ements PriorityQueue<kE> {

public void put(E obj) {
add(obj); //add new el enent to end of array
rot ateUp(size() - 1);

}

private void rotateUp(int index) {
If (index == 0) return;
Int parent = (index - 1)/2;
I f (el enment At (parent). conpareTo(el enment At (i ndex)) <= 0)
return;
swap(i ndex, parent);
r ot at eUp(parent);

get ()

« Remove the least element — it Is at the root

* This leaves a hole at the root — fill it in with
the last element of the array

e |f this violates heap order because the root
element is too big, swap it down with the
smaller of its children

e Continue swapping it down until it finds its
rightful place

 The heap Iinvariant is maintained!

21

14

22

38

25

10

20

19

35

21

get ()

14

22

38

25

10

20

19

35

21

get ()

14

22

38

25

10

20

19

35

21

get ()

19

22

38

25

10

14

20

35

21

22

38

25

10

14

20

19

35

21

22

38

25

10

19

20

14

35

21

22

38

25

10

19

20

14

35

4 5

21

get ()

22

38

25

10

19

20

14

35

4 5

21

get ()

22

38

25

10

19

20

14

35

4 5

21

get ()

20

22

38

25

10

19

14

35

4 5

21

20

get ()

22

38

25

10

19

14

35

4 5

21

get ()

20

22

38

25

10

19

14

35

4 5

21

get ()

10

22

38

25

20

19

14

35

4 5

21

get ()

10

22

38

25

20

19

14

35

get ()

 Time is O(log n), since the tree is balanced

get ()
public E get() {

I f (isEnpty()) throw new NoSuchEl enent Excepti on();
E tenp = elenent At (0);
set El enent At (el enent At (size() - 1), 0);
set Si ze(size() - 1);
r ot at eDown(0) ;
return tenp;
}
private void rotateDown(int index) {
int child = 2*(index + 1); //right child
if (child >= size()
|| elementAt(child - 1).conpareTo(elenentAt(child)) < 0)
child -= 1;
If (child >= size()) return;
I f (el enment At (i ndex) . conpareTo(el enmentAt(child)) <= 0)
return,
swap(i ndex, child);
r ot at eDown(chil d);

HeapSort

Given a Conpar abl e[] array of length n,

1. Put all n elements into a heap — O(n log n)
2. Repeatedly get the min — O(n log n)

public static void heapSort(Conparable[] a) {
PriorityQueue<Conparabl e> pg = new PQ<Conpar abl e>() ;
for (Conparable x : a) { pg.put(x); }
for (int i =0; i <a.length; 1++) { a[i] = pqg.get(); }
}

Building the Heap

 We can actually do better than O(n log n)
when building the heap:

— First just put the data into a binary tree with the
same balanced property as a heap

— Then, starting at the bottom right of the tree, we’ll

visit each node In reverse level order. At each
node, we’ll call the same r ot at eDown(1)

function that get () uses

— You can show that this works, and is O(n).
(Convince yourself that it works, and see the book
for the running time analysis)

