CS211
Computersand Programming

L ecture 15: Priority Queues and Heaps



Announcements

Assignment 4 Programming IS up

Assignment 4 Written coming soon

Both due Tuesday at 10am

Quiz Tomorrow on Complexity, Iterators, and ADTSs
Discussion of Java 5 Generics tomorrow

Reading for today: Weiss 21.1 - 21.5



The Bag Interface

| nterface Bag<E> {
voi d put (E obj);
E get(); //extract sone el enent
bool ean 1 sEnpty();

Examples: Stack, Queue




Stacks and Queues as Lists

e Stack (LIFO) implemented as list
— put (), get () from front of list

* Queue (FIFO) implemented as list
— put () on back of list, get () from front of list

« All Bag operations are O(1)
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Priority Queue

e A Bag in which data items are Conpar abl e

* lesser elements (as determined by
conmpar eTo( ) ) have higher priority

e get () returns the element with the highest
priority = least in the conpar eTo() ordering

 break ties arbitrarily



Examples

e Scheduling jobs to run on a computer
— default priority = arrival time
— priority can be changed by operator

e Scheduling events to be processed by an
event handler
— priority = time of occurrence
* Airline check-in
— first class, business class, coach
— FIFO within each class



Priority Queues

| nt erface Bag<E> {
voi d put (E obj);
E get(); //extract sone el ement
bool ean 1 sEmpty();

I nterface PriorityQueue<E extends Conparabl e>
ext ends Bag<E> {}




Priority Queues as Lists

* Maintain as unordered list
— put () puts new element at front — O(1)
— get () must search the list — O(n)

e Maintain as ordered list
— put () must search the list — O(n)
— get () gets element at front — O(1)

* In either case, O(n?) to process n elements

Can we do better?



Important Special Case

e Fixed number of priority levels O,...,p — 1
e FIFO within each level
 Example: airline check-in

e put () —Insert in appropriate queue — O(1)
e get () — must find a nonempty queue — O(p)



Heaps

e A heap Is a concrete data structure that can
be used to implement priority gueues
» Gives better complexity than either ordered

or unordered list implementation:
— put (), get () —O(log n)
— 1 sEnpty() —0O(1)
* O(n log n) to process n elements
* Do not confuse with heap memory, where
the Java virtual machine allocates space for

objects — different usage!



Heaps

 Binary tree with data at each node
 Satisfies the Heap Order Invariant:

The least (highest priority)
element of any subtree Is found
at the root of that subtree




least element of any subtree
IS always found at the root

of that subtree
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but it is possible to have
smaller elements deeper
In the tree!



Examples of Heaps

» Ages of people in family tree
— parent is always older than children, but you can
have an uncle who Is younger than you

» Salaries of employees of a company
— bosses generally make more than subordinates,
but a VP In one subdivision may make less than a
Project Supervisor in a different subdivision



Balanced Heaps

Two restrictions:

1. Any node of depth < d — 1 has exactly 2

children, where d is the height of the tree

— Implies that any two maximal paths (path from
a root to a leaf) are of length d or d — 1, and
the tree has at least 29 nodes

2. All maximal paths of length d are to the left
of those of lengthd — 1



A Balanced Heap
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Store In an Array or Vector

e Elements of the heap are stored in the array
In order, going across each level from left to
right, top to bottom

* The children of the node at array index n are
found at 2n + 1 and 2n + 2

* The parent of node nis found at (n — 1)/2



Store In an Array or Vector
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put ()

 Put the new element at the end of the array

o |f this violates heap order because it Is
smaller than its parent, swap it with Iits parent

e Continue swapping it up until it finds its
rightful place

 The heap Iinvariant is maintained!
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put ()

 Time is O(log n), since the tree is balanced
— Size of tree Is exponential as a function of depth
— depth of tree is logarithmic as a function of size



put ()

cl ass PQ<E extends Conparabl e> extends java. util. Vector<E>
I npl ements PriorityQueue<kE> {

public void put(E obj) {
add(obj); //add new el enent to end of array
rot ateUp(size() - 1);

}

private void rotateUp(int index) {
If (index == 0) return;
Int parent = (index - 1)/2;
I f (el enment At (parent). conpareTo(el enment At (i ndex)) <= 0)
return;
swap(i ndex, parent);
r ot at eUp( parent);




get ()

« Remove the least element — it Is at the root

* This leaves a hole at the root — fill it in with
the last element of the array

e |f this violates heap order because the root
element is too big, swap it down with the
smaller of its children

e Continue swapping it down until it finds its
rightful place

 The heap Iinvariant is maintained!
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get ()

 Time is O(log n), since the tree is balanced



get ()
public E get() {

I f (isEnpty()) throw new NoSuchEl enent Excepti on();
E tenp = elenent At (0);
set El enent At (el enent At (size() - 1), 0);
set Si ze(size() - 1);
r ot at eDown( 0) ;
return tenp;
}
private void rotateDown(int index) {
int child = 2*(index + 1); //right child
if (child >= size()
|| elementAt(child - 1).conpareTo(elenentAt(child)) < 0)
child -= 1;
If (child >= size()) return;
I f (el enment At (i ndex) . conpareTo(el enmentAt(child)) <= 0)
return,
swap(i ndex, child);
r ot at eDown( chil d);




HeapSort

Given a Conpar abl e[ ] array of length n,

1. Put all n elements into a heap — O(n log n)
2. Repeatedly get the min — O(n log n)

public static void heapSort(Conparable[] a) {
PriorityQueue<Conparabl e> pg = new PQ<Conpar abl e>() ;
for (Conparable x : a) { pg.put(x); }
for (int i =0; i <a.length; 1++) { a[i] = pqg.get(); }
}




Building the Heap

 We can actually do better than O(n log n)
when building the heap:

— First just put the data into a binary tree with the
same balanced property as a heap

— Then, starting at the bottom right of the tree, we’ll

visit each node In reverse level order. At each
node, we’ll call the same r ot at eDown( 1)

function that get () uses

— You can show that this works, and is O(n).
(Convince yourself that it works, and see the book
for the running time analysis)



