
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 15: Priority Queues and Heaps

Announcements

• Assignment 4 Programming is up
• Assignment 4 Written coming soon
• Both due Tuesday at 10am
• Quiz Tomorrow on Complexity, Iterators, and ADTs
• Discussion of Java 5 Generics tomorrow
• Reading for today: Weiss 21.1 - 21.5

The Bag Interface

interface Bag<E> {
void put(E obj);
E get(); //extract some element
boolean isEmpty();

}

Examples: Stack, Queue

Stacks and Queues as Lists

• Stack (LIFO) implemented as list
– put(), get() from front of list

• Queue (FIFO) implemented as list
– put() on back of list, get() from front of list

• All Bag operations are O(1)

55 120 19 16first

last

Priority Queue

• A Bag in which data items are Comparable

• lesser elements (as determined by
compareTo()) have higher priority

•get() returns the element with the highest
priority = least in the compareTo() ordering

• break ties arbitrarily

Examples

• Scheduling jobs to run on a computer
– default priority = arrival time
– priority can be changed by operator

• Scheduling events to be processed by an
event handler

– priority = time of occurrence
• Airline check-in

– first class, business class, coach
– FIFO within each class

Priority Queues

interface Bag<E> {
void put(E obj);
E get(); //extract some element
boolean isEmpty();

}

interface PriorityQueue<E extends Comparable>
extends Bag<E> {}

Priority Queues as Lists
• Maintain as unordered list

– put() puts new element at front – O(1)
– get() must search the list – O(n)

• Maintain as ordered list
– put() must search the list – O(n)
– get() gets element at front – O(1)

• In either case, O(n2) to process n elements

Can we do better?

Important Special Case

• Fixed number of priority levels 0,...,p – 1
• FIFO within each level
• Example: airline check-in

•put()– insert in appropriate queue – O(1)
•get()– must find a nonempty queue – O(p)

Heaps

• A heap is a concrete data structure that can
be used to implement priority queues

• Gives better complexity than either ordered
or unordered list implementation:
– put(), get() – O(log n)
– isEmpty() – O(1)

• O(n log n) to process n elements
• Do not confuse with heap memory, where

the Java virtual machine allocates space for
objects – different usage!

Heaps

• Binary tree with data at each node
• Satisfies the Heap Order Invariant:

The least (highest priority)
element of any subtree is found
at the root of that subtree

4

146

21 198 35

22 5538 10 20

least element of any subtree
is always found at the root
of that subtree

but it is possible to have
smaller elements deeper
in the tree!

Examples of Heaps

• Ages of people in family tree
– parent is always older than children, but you can

have an uncle who is younger than you

• Salaries of employees of a company
– bosses generally make more than subordinates,

but a VP in one subdivision may make less than a
Project Supervisor in a different subdivision

Balanced Heaps

Two restrictions:
1. Any node of depth < d – 1 has exactly 2

children, where d is the height of the tree
– implies that any two maximal paths (path from

a root to a leaf) are of length d or d – 1, and
the tree has at least 2d nodes

2. All maximal paths of length d are to the left
of those of length d – 1

4

146

21 198 35

22 5538 10 20

A Balanced Heap

d = 3

Store in an Array or Vector

• Elements of the heap are stored in the array
in order, going across each level from left to
right, top to bottom

• The children of the node at array index n are
found at 2n + 1 and 2n + 2

• The parent of node n is found at (n – 1)/2

4

146

21 198 35

22 5538 10 20

0

1 2

3 4 5 6

7 8 9 10 11

children of node n are found at 2n + 1 and 2n + 2

Store in an Array or Vector

put()

• Put the new element at the end of the array
• If this violates heap order because it is

smaller than its parent, swap it with its parent
• Continue swapping it up until it finds its

rightful place
• The heap invariant is maintained!

4

146

21 198 35

22 5538 10 20

put()

4

146

21 198 35

22 5538 10 20

put()

5

4

146

21 58 35

22 5538 10 20

put()

19

4

56

21 148 35

22 5538 10 20

put()

19

4

56

21 148 35

22 5538 10 20

put()

19

4

56

21 148 35

22 5538 10 20

put()

19 2

4

56

21 148 2

22 5538 10 20

put()

19 35

4

26

21 148 5

22 5538 10 20

put()

19 35

2

46

21 148 5

22 5538 10 20

put()

19 35

2

46

21 148 5

22 5538 10 20

put()

19 35

put()

• Time is O(log n), since the tree is balanced
– size of tree is exponential as a function of depth
– depth of tree is logarithmic as a function of size

put()
class PQ<E extends Comparable> extends java.util.Vector<E>

implements PriorityQueue<E> {

public void put(E obj) {
add(obj); //add new element to end of array
rotateUp(size() - 1);

}

private void rotateUp(int index) {
if (index == 0) return;
int parent = (index - 1)/2;
if (elementAt(parent).compareTo(elementAt(index)) <= 0)

return;
swap(index, parent);
rotateUp(parent);

}

get()

• Remove the least element – it is at the root
• This leaves a hole at the root – fill it in with

the last element of the array
• If this violates heap order because the root

element is too big, swap it down with the
smaller of its children

• Continue swapping it down until it finds its
rightful place

• The heap invariant is maintained!

4

56

21 148 35

22 5538 10 20

get()

19

56

21 148 35

22 5538 10 20

get()

19

4

56

21 148 35

22 5538 10 20

get()

19

4

19

56

21 148 35

22 5538 10 20

get()

4

5

196

21 148 35

22 5538 10 20

get()

4

5

146

21 198 35

22 5538 10 20

get()

4

5

146

21 198 35

22 5538 10 20

get()

4

146

21 198 35

22 5538 10 20

get()

4 5

146

21 198 35

22 5538 10 20

get()

4 5

20

146

21 198 35

22 5538 10

get()

4 5

20

6

14

21 198 35

22 5538 10

get()

4 5

20

8

6

14

21 19 35

22 5538 10

get()

4 5

10

8

6

14

21 19 35

22 5538 20

get()

4 5

10

8

6

14

21 19 35

22 5538 20

get()

4 5

get()

• Time is O(log n), since the tree is balanced

get()
public E get() {

if (isEmpty()) throw new NoSuchElementException();
E temp = elementAt(0);
setElementAt(elementAt(size() - 1), 0);
setSize(size() - 1);
rotateDown(0);
return temp;

}
private void rotateDown(int index) {

int child = 2*(index + 1); //right child
if (child >= size()

|| elementAt(child - 1).compareTo(elementAt(child)) < 0)
child -= 1;

if (child >= size()) return;
if (elementAt(index).compareTo(elementAt(child)) <= 0)

return;
swap(index, child);
rotateDown(child);

}

HeapSort

Given a Comparable[] array of length n,

1. Put all n elements into a heap – O(n log n)
2. Repeatedly get the min – O(n log n)

public static void heapSort(Comparable[] a) {
PriorityQueue<Comparable> pq = new PQ<Comparable>();
for (Comparable x : a) { pq.put(x); }
for (int i = 0; i < a.length; i++) { a[i] = pq.get(); }

}

Building the Heap

• We can actually do better than O(n log n)
when building the heap:
– First just put the data into a binary tree with the

same balanced property as a heap
– Then, starting at the bottom right of the tree, we’ll

visit each node in reverse level order. At each
node, we’ll call the same rotateDown(i)
function that get() uses

– You can show that this works, and is O(n).
(Convince yourself that it works, and see the book
for the running time analysis)

