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Lecture 15: Priority Queues and Heaps



Announcements

• Assignment 4 Programming is up
• Assignment 4 Written coming soon
• Both due Tuesday at 10am
• Quiz Tomorrow on Complexity, Iterators, and ADTs
• Discussion of Java 5 Generics tomorrow
• Reading for today: Weiss 21.1 - 21.5



The Bag Interface

interface Bag<E> {
void put(E obj);
E get(); //extract some element
boolean isEmpty();

}

Examples: Stack, Queue



Stacks and Queues as Lists

• Stack (LIFO) implemented as list
– put(), get() from front of list

• Queue (FIFO) implemented as list
– put() on back of list, get() from front of list

• All Bag operations are O(1)
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Priority Queue

• A Bag in which data items are Comparable

• lesser elements (as determined by 
compareTo()) have higher priority

•get() returns the element with the highest 
priority = least in the compareTo() ordering

• break ties arbitrarily



Examples

• Scheduling jobs to run on a computer
– default priority = arrival time
– priority can be changed by operator

• Scheduling events to be processed by an 
event handler

– priority = time of occurrence
• Airline check-in

– first class, business class, coach
– FIFO within each class



Priority Queues

interface Bag<E> {
void put(E obj);
E get(); //extract some element
boolean isEmpty();

}

interface PriorityQueue<E extends Comparable>
extends Bag<E> {}



Priority Queues as Lists
• Maintain as unordered list

– put() puts new element at front – O(1)
– get() must search the list – O(n)

• Maintain as ordered list
– put() must search the list – O(n)
– get() gets element at front – O(1)

• In either case, O(n2) to process n elements

Can we do better?



Important Special Case

• Fixed number of priority levels 0,...,p – 1
• FIFO within each level
• Example: airline check-in

•put()– insert in appropriate queue – O(1)
•get()– must find a nonempty queue – O(p)



Heaps

• A heap is a concrete data structure that can 
be used to implement priority queues

• Gives better complexity than either ordered 
or unordered list implementation:
– put(), get() – O(log n)
– isEmpty() – O(1)

• O(n log n) to process n elements
• Do not confuse with heap memory, where 

the Java virtual machine allocates space for 
objects – different usage!



Heaps

• Binary tree with data at each node
• Satisfies the Heap Order Invariant:

The least (highest priority) 
element of any subtree is found 
at the root of that subtree
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least element of any subtree
is always found at the root
of that subtree

but it is possible to have
smaller elements deeper
in the tree!



Examples of Heaps

• Ages of people in family tree
– parent is always older than children, but you can 

have an uncle who is younger than you

• Salaries of employees of a company
– bosses generally make more than subordinates, 

but a VP in one subdivision may make less than a 
Project Supervisor in a different subdivision



Balanced Heaps

Two restrictions:
1. Any node of depth < d – 1 has exactly 2 

children, where d is the height of the tree
– implies that any two maximal paths (path from 

a root to a leaf) are of length d or d – 1, and 
the tree has at least 2d nodes

2. All maximal paths of length d are to the left 
of those of length d – 1
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A Balanced Heap

d = 3



Store in an Array or Vector

• Elements of the heap are stored in the array 
in order, going across each level from left to 
right, top to bottom

• The children of the node at array index n are 
found at 2n + 1 and 2n + 2

• The parent of node n is found at (n – 1)/2
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children of node n are found at 2n + 1 and 2n + 2

Store in an Array or Vector



put()

• Put the new element at the end of the array
• If this violates heap order because it is 

smaller than its parent, swap it with its parent
• Continue swapping it up until it finds its 

rightful place
• The heap invariant is maintained!
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put()

• Time is O(log n), since the tree is balanced
– size of tree is exponential as a function of depth
– depth of tree is logarithmic as a function of size



put()
class PQ<E extends Comparable> extends java.util.Vector<E>

implements PriorityQueue<E> {

public void put(E obj) {
add(obj); //add new element to end of array
rotateUp(size() - 1);

}

private void rotateUp(int index) {
if (index == 0) return;
int parent = (index - 1)/2;
if (elementAt(parent).compareTo(elementAt(index)) <= 0)

return;
swap(index, parent);
rotateUp(parent);

}



get()

• Remove the least element – it is at the root
• This leaves a hole at the root – fill it in with 

the last element of the array
• If this violates heap order because the root 

element is too big, swap it down with the 
smaller of its children

• Continue swapping it down until it finds its 
rightful place

• The heap invariant is maintained!
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get()

• Time is O(log n), since the tree is balanced



get()
public E get() {

if (isEmpty()) throw new NoSuchElementException();
E temp = elementAt(0);
setElementAt(elementAt(size() - 1), 0);
setSize(size() - 1);
rotateDown(0);
return temp;

}
private void rotateDown(int index) {

int child = 2*(index + 1); //right child
if (child >= size()

|| elementAt(child - 1).compareTo(elementAt(child)) < 0)
child -= 1;

if (child >= size()) return;
if (elementAt(index).compareTo(elementAt(child)) <= 0)

return;
swap(index, child);
rotateDown(child);

}



HeapSort

Given a Comparable[] array of length n,

1. Put all n elements into a heap – O(n log n) 
2. Repeatedly get the min – O(n log n)

public static void heapSort(Comparable[] a) {
PriorityQueue<Comparable> pq = new PQ<Comparable>();
for (Comparable x : a) { pq.put(x); }
for (int i = 0; i < a.length; i++) { a[i] = pq.get(); }

}



Building the Heap

• We can actually do better than O(n log n) 
when building the heap:
– First just put the data into a binary tree with the 

same balanced property as a heap
– Then, starting at the bottom right of the tree, we’ll 

visit each node in reverse level order. At each 
node, we’ll call the same rotateDown(i)
function that get() uses

– You can show that this works, and is O(n). 
(Convince yourself that it works, and see the book 
for the running time analysis)


