
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 14: Abstract Data Types

Some Data Structures

• Elementary Data Structures
– Arrays, Lists, Trees

• Search Structures
– Binary Search Trees, Hashtables

• Sequence Structures
– Stacks, Queues, Priority Queues, Heaps,

Extensible Arrays (Java Vectors)

• Graphs

Choosing a Data Structure

Issues:
• What operations do I need to perform on the data?

– Insertion, deletion, searching, reset to initial state?

• How efficient do the operations need to be?
• Are there any additional constraints on the operations

or on the data structure?
– Can there be duplicates?
– When extracting elements, does order matter?

• Is there a known upper bound on the amount of data?
Or can it grow unboundedly large?

First Things First

• What operations do you need to perform?
• in Java, these are usually specified by an

interface (e.g. Iterator, Collection,
Set)

• independent of the implementation
• avoid overspecification!

Abstract Datatypes (ADTs)

• A collection of abstract operations and
constraints specified independently of the
implementation

• Examples: bag, priority queue, dictionary

Two Examples

interface Searchable<E> {
void insert(E obj);
void delete(E obj); //remove all objects equal to obj
boolean search(E obj);

}

interface Bag<E> {
void put(E obj);
E get(); //extract some object
boolean isEmpty();

}

One ADT, Many Implementations

interface Bag<E> {
void put(E obj);
E get(); //extract some object
boolean isEmpty();

}

class Stack<E> extends java.util.Stack<E>
implements Bag<E> {

public boolean isEmpty() { return empty(); }
public E get() { return pop(); }
public void put(E obj) { push(obj); }

}

One ADT, Many Implementations

interface Bag<E> {
void put(E obj);
E get(); //extract some object
boolean isEmpty();

}

class Queue<E> extends java.util.LinkedList<E>
implements Bag<E> {

//isEmpty() inherited from LinkedList<E>
public E get() { return remove(); }
public void put(E object) { add(object); }

}

One ADT, Many Implementations

interface Bag<E> {
void put(E obj);
E get(); //extract some object
boolean isEmpty();

}

class RandomBag<E> extends Queue<E> implements Bag<E> {
//isEmpty, put inherited from Queue<E>
Random rand = new java.util.Random();
public E get() {

return remove(rand.nextInt(size()));
}

}

Searching

interface Searchable<E> {
void insert(E obj);
void delete(E obj); //remove all objects equal to obj
boolean search(E obj);

}

Searching -- Arrays vs Lists

• Arrays
– Advantage: Random access, fast searching --

O(log n) if sorted
– Disadvantage: fixed size, insertion & deletion are

linear if sorted
• Lists

– Advantage: Extensible, insertion & deletion are
constant time

– Disadvantage: No random access, searching is
linear (even if sorted)

Extensible Arrays (Vectors)
• A good compromise

– random access, but extensible
– reallocates if add would cause array bound to be exceeded

public class Vector<E> {
boolean add(E o);
void add(int index, E element);
boolean addAll(Collection<? extends E> c);
boolean contains(Object elem);
E elementAt(int index);
Enumeration<E> elements();
int indexOf(Object elem);
int lastIndexOf(Object elem);
boolean remove(Object o);
int size();

}

Hashing

• An excellent solution if duplicates not allowed
– In practice, constant time insert, delete, search

• Based on a hash function that converts data to
an index into a large array of lists

– unlikely that two randomly chosen data items
would hash to the same value (this is called a
collision)

– usually implemented in native code -- extremely
fast

Java HashSet

public class HashSet<E> {
boolean add(E o);
void clear();
Object clone();
boolean contains(Object o);
boolean isEmpty();
Iterator<E> iterator();
boolean remove(Object o);
int size();

}

Hashing
Data structure consists of an array of lists
• Insertion:

– Hash data to get array index
– Append data to a list at that index

• Search:
– Hash data to get array index
– Look for data by walking down list at that index

• Deletion:
– Hash data to get array index
– Walk down list at that index and remove data

3 61

42 90

12

55 120 19 16

25 67 77

58

1024:
1025:

1023:

A 4-way collision:
h(55) = h(120) = h(19) = h(16) = 1024

...

...

Performance

Affected by many factors:
• Size of array relative to number of data items

– Consider limit where there is only 1 bucket
– as bad as simple linked lists!

• Quality of hash function
– Good hash functions do not lead to clustering of

data → low collision rate

Examples of Hash Functions

int → {0,1,...,99}
• Bad:

– constant functions: hash(x) = 7
– two most significant digits: hash(379988) = 37

• Better:
– two least significant digits: hash(379988) = 88
– sum of digit pairs mod 100: hash(379988) =

37+99+88 (mod 100) = 24
– square number and take middle digits

Universal Hashing

• Parametrized family of numeric functions
– e.g., fabc(x) = ax2 + bx + c (mod 100)

• Pick a,b,c at random!
• Works as well or better than hand-

crafted hash functions in most cases!
• Disadvantage: no persistence

Test of an Example Hash
Function

• Multiplicative hash function
• size of hashtable = 1024
• key k is in range 0..32677
• hash function h(k) =

(((32768*0.6125423371*k)%32768)%1024)

Testing a Hash Function
class HashTest {

public static void main(String[] args) {
int[] histogram = new int[1024];
for (int i = 0; i < 32768; i++) {
int bucket = ((int)((32768*0.6125423*i)%32768))%1024;
histogram[bucket]++;

}
//print histogram
System.out.println("Histogram:");
for (int i = 0; i < 1024; i++) {
System.out.print(i + " " + histogram[i] + " ");
if (i%10 == 0) System.out.println();

}
}

}

Testing a Hash Function
Distribution of keys among buckets
• Number of keys = 32768
• Number of buckets = 1024
• Average number of keys/bucket = 32
• Number of keys in each bucket was

always in range 29-34
• Conclusion: this is a good hash function

Hashing Objects
So far, we have stored only integers in hash
tables. In general, we want to store objects.

– Give each object an int hash code. Java method:
hashCode()

– Contract for hashCode() method:
• Whenever it is invoked in the same object, it must return the

same result
• Two objects that are equal must have the same hash code
• Two objects that are not equal should return different hash

codes, but are not required to do so

Observations
• Hashing is popular in practice because code is

easy to write and maintain and performance is
typically excellent

• Performance depends on two key factors:
– load factor λ = number of entries/size of array
– choice of hash function
– if λ ≤ 3/4 and hash function is chosen well, get

expected O(1) complexity for all operations

• Our version is called hashing with separate lists
or chained hashing -- used in Java Collections

• Other methods such as open-address hashing

Dictionaries
• In many applications, we want a more general

search structure that stores (key, value) pairs
– Given a key, find the associated value

• Examples:
– language dictionaries: key is word, value is meaning
– telephone directory: key is name, value is telephone

number
– grade sheet for CS211: key is netID, value is grade

• This type of ADT is called a dictionary

Dictionaries
public abstract class Dictionary<K,V> {
abstract Enumeration<V> elements();
abstract V get(Object key);
abstract boolean isEmpty();
abstract Enumeration<K> keys();
abstract V put(K key, V value);
abstract V remove(Object key);
abstract int size();

}

public class Hashtable<K,V>
extends Dictionary<K,V> {
...

}

Java Hashtables
class HashTest {
static Hashtable<String,Integer> h = new Hashtable<String,Integer>();
static {
h.put("two", new Integer(2));
h.put("three", new Integer(3));
h.put("five", new Integer(5));
h.put("seven", new Integer(7));

}
public static void main(String[] args) {
System.out.println(h.get("three"));
Enumeration e = h.elements();
while (e.hasMoreElements()) {
System.out.print(e.nextElement());

}
}

}

3

5273

Next Time

• Priority Queues
• Heaps
• Graphs

