
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 13: Generic Programming and Inner
Classes

Announcements

• Assignment 3 Programming due today
• Assignment 3 Written due tomorrow
• Slight schedule change: Generic Programming today,

ADTs Wednesday and Thursday
• Quiz Friday on Complexity, Iterators, and ADTs
• Prelim 2 next Wednesday
• Reading for today: Weiss 6.1-6.4

Linear Search

• First version:
– Input was int[], used == to compare elements

• More generic version:
– Input was Comparable[], used compareTo()

• Is there a still more generic version that is
independent of the data structure?
– For example, works even with Comparable[][]

Key Ideas

• Iterator interface
• Linear search written once and for all using
Iterator interface

• Any data structure that wants to support
linear search must implement Iterator

• Implementing Iterator interface
– We will look at three implementations
– Anonymous inner classes provide an elegant

solution

boolean linearSearch(Comparable[] a, Object v) {
for (int i = 0; i < a.length; i++) {

if (a[i].compareTo(v) == 0) return true;
}
return false;

}

Linear Search

• relies on data being stored in a 1D array
• will not work if data is stored in another data structure

such as a 2D array, list, stack, queue, ...

Linear Search

All linear search needs to know is:
1. are there more elements to look at?
2. if so, get me the next element

boolean linearSearch(Comparable[] a, Object v) {
for (int i = 0; i < a.length; i++) {

if (a[i].compareTo(v) == 0) return true;
}
return false;

}

Generic Linear Search

• Data is contained in some object
• Object has an adapter that permits data to be

enumerated in some order
• Adapter has two buttons

– boolean hasNext(): are there more elements to be
enumerated?

– Object next(): if so, give me a new element that has not
been enumerated so far

4 22
234 -9

4-922
Linear search

Iterator Interface
interface Iterator {

boolean hasNext();
Object next();
void remove(); //we will not use this

}

• predefined in Java
• linear search can be written using Iterator interface
• any data class that wishes to allow searching using this

code can do so by implementing Iterable (i.e., by
providing an Iterator

interface Iterable {
Iterator iterator();

}

Enumeration Interface
interface Enumeration {

boolean hasMoreElements();
Object nextElement();

}

• similar functionality to Iterator (no remove method)
•Iterator is preferred

Generic Linear Search
Array version

Iterator version

boolean linearSearch(Object[] a, Object v) {
for (int i = 0; i < a.length; i++) {

if (a[i].equals(v)) return true;
}
return false;

}

boolean linearSearch(Iterator a, Object v) {
while (a.hasNext()) {

if (a.next().equals(v)) return true;
}
return false;

}

Note: public boolean equals(Object obj) must be
implemented properly (overridden in the class which is the dynamic
type of a) properly for this to work.

How Do You Produce an Iterator?

Some possibilities:
1. Adapter is a separate class from the data

class
2. Adapter is an inner class of the data class
3. Adapter is an anonymous inner class

Adapter (Version 1)

class ArrayIterator implements Iterator {
private Object[] data;
private int index = 0; //index of next element

public ArrayIterator(Object[] a) {
data = a;

}
public boolean hasNext() {

return (index < data.length);
}
public Object next() {

return data[index++];
}

}

Using the Adapter

String[] a = {"Hello", "world"};

Iterator iter = new ArrayIterator(a);
while (iter.hasNext()) {
System.out.println(iter.next());

}

iter = new ArrayIterator(a);
if linearSearch(iter,"world") {
System.out.println("found!");

}

• Can create as many iterators as needed
• Works for other data structures

– 2D arrays: keep two cursors, one for row,
one for column

– standard orders of enumeration:
• row-major
• column-major

Features

class Array2DIterator implements Iterator {
private Object[][] data;
private int rowIndex = 0, colIndex = 0;

public Array2DIterator(Object[][] a) { data = a; }

public boolean hasNext() {
while (rowIndex < data.length
&& colIndex >= data[rowIndex].length) {

rowIndex++; colIndex = 0; //if end of row
}
return (rowIndex < data.length
&& colIndex < data[rowIndex].length);

}
public Object next() {

if (hasNext()) return data[rowIndex][colIndex++];
else throw new NoSuchElementException();

}
}

Sharks and Remoras

Data class is like shark
Iterator implementation

is like a remora

A single shark must allow many remoras to hook to it

class Shark implements Iterable {
public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {
return new Remora(this);

}
}

class Remora implements Iterator {
private int index = 0;
private Shark shark;
public Remora(Shark s) { shark = s; }
public boolean hasNext() {
return (index < shark.data.length);

}
public Object next() {
return shark.data[index++];

}
}

Remora teeth

String[] a = {"Hello", "world"};
Shark s = new Shark(a); //object containing data
boolean b = linearSearch(s.iterator(), "Hello");
boolean c = linearSearch(s.iterator(), "world");
boolean d = linearSearch(s.iterator(), "Bye");

Client Code

Shark

shark = s
index = 0

Remora

shark = s
index = 0

Remora

shark = s
index = 0

Remora

Critique
• Good:

– Shark class focuses on data, Remora class focuses
on enumeration

• Bad:
– Remora code relies on being able to access Shark

variables such as data array
• What if data was declared private?

– Remora is specialized to Shark, but code appears
outside Shark class

• 2D array Shark will require a different Remora
• We may change Shark class and forget to update Remora

– Clients can create Remoras without invoking
iterator() method of Shark

• Better to have language construct to enforce convention

Better: Inner Classes

• Inner class: Java allows you declare a class
within another class

• Inner classes can occur at many levels within
another class
– Member level

• Inner class defined as if it were another field or method

– Statement level
• Inner class defined as if it were a statement in a method

– Expression level
• Inner class defined as it were part of an expression
• Called anonymous classes

• Let us focus on member-level inner classes

Example
of an
Inner
Class

class Shark implements Iterable {
public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {
return new Remora();

}
class Remora implements Iterator {
private int index = 0;
public boolean hasNext() {
return (index < data.length);

}
public Object next() {
return data[index++];

}
}

}

String[] a = {"Hello", "world"};
Shark s = new Shark(a);
boolean b = linearSearch(s.iterator(), "Hello");

Client
Code

Observations
• Inner class can be declared public, private, or

protected
– Inner class name is visible accordingly

• Inner class can also be instantiated by
outerObject.new InnerClass()
– e.g., Shark.new Remora()
– but new Shark.Remora() does not work

• Instances of inner class have access to all
members of containing outer class instance,
even if declared private

• Keyword this in Remora class refers to
Remora object, not outer Shark object

• How do we get a reference to Shark object
from Remora? Here’s one way:

class Shark {
private kahuna;
public Shark() { kahuna = this; }

class Remora{ //inner class
...kahuna... //inner class simply accesses variable

}
}

Adapter Classes
• An inner class is like an adapter that permits

client code to work with class containing data
without modifying the data class itself

• This is a very general design pattern that
shows up in many contexts (e.g., GUI's)

• To permit programmers to write adapters
compactly, Java permits programmers to write
anonymous classes
– Class does not have a name
– Must be instantiated at the point where it is defined

Anonymous Classes
class Shark implements Iterable {
public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {
return new Remora();

}
class Remora implements Iterator {
private int index = 0;
public boolean hasNext() {
return (index < data.length);

}
public Object next() {
return data[index++];

}
}

}

Anonymous Classes
class Shark implements Iterable {
public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {
return new Remora();

}
class Remora implements Iterator {
private int index = 0;
public boolean hasNext() {
return (index < data.length);

}
public Object next() {
return data[index++];

}
};

}

Anonymous Classes
class Shark implements Iterable {
public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {
return new Iterator {
private int index = 0;
public boolean hasNext() {
return (index < data.length);

}
public Object next() {
return data[index++];

}
};

}

Anonymous Classes

• Class declaration has usual body, but
– inner class
– no name
– no access specifier: public/private/protected
– no explicit extends or implements

• it either extends one class or implements one
interface

– no constructor

• To specify that A extends superclass P
– new P { ... }; //creates instance of A
– new P(42) { ... }; //calls a different
constructor of P

– P x = new P { ... }; //assignment
• To specify that A implements interface I

– new I { ... }
– I foo = new I { ... }; //assignment

• Anonymous class can override methods of
superclass P or implement interface methods of I

• All other methods and fields are effectively private
– No way to invoke them from outside!

Creating an Instance of
Anonymous Class A

Conclusions

• Generic code
– works on data collections without regard to

type of elements or data structure

• Writing generic code
– Iterator interface is very useful

– use inner classes to implement it

