
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 12: Asymptotic Running Time of Algorithms

Announcments

• There have been some corrections to the Assignment 3
programming portion:
– In SimpleList.java the remove method should take an int, not a

comparable.
– In the description of the deletion algorithm for a binary search tree,

it was erroneously stated a max node had to be a leaf. It now
correctly says that a max or min node can have at most one child.

• Peter has sent out many clarifications and hints. You
should read them.

• Reading for today: Weiss Chapter 5. For now don’t worry
about Big-Omega, Big-Theta, and Little-Oh.

• Remember that the Programming portion is due tomorrow,
but the written portion is due Wednesday.

Asymptotic Complexity: leading term analysis

• Comparing searching and sorting algorithms so far:
– Count worst-case number of comparisons as function of array size.
– Drop lower-order terms, floors/ceilings, and constants to come up

with asymptotic running time of algorithm.

• We will now generalize this approach to other programs:
– Count worst-case number of operations executed by program as a

function of input size.
– Formalize definition of big-O complexity to derive asymptotic

running time of algorithm.

Formal Definition of big-O Notation:

• Let f(n) and g(n) be functions. We say f(n) is of order g(n),
written O(g(n)), if there is a constant c > 0 such that for all
but a finite number of positive values of n:

f(n) = c * g(n)
In other words, sooner or later g(n) overtakes f(n) as n gets large.

• Example: f(n) = n+5; g(n) = n. Show that f(n) = O(g(n)).
Choose c = 6:
f(n) = n+5 = 6*n for all n > 0.

• Example: f(n) = 17n; g(n) = 3n2. Show that f(n) = O(g(n)).
Choose c = 6:
f(n) = 17n = 6 * 3n2 for all n > 0.

• To prove that f(n) = O(g(n)), find an n0 and c such that
f(n) = c * g(n) for all n > n0.

• We will call the pair (c, n0) a witness pair for proving that
f(n) = O(g(n)).

• For asymptotic complexity, base of logarithms does not matter.

• Let us show that log2(n) = O(logb(n)) for any b > 1.

• Need to find a witness pair (c, n0) such that:
log2(n) = c * logb(n) for all n > n0.

• Choose (c = log2(b), n0 = 0).

• This works because
c * logb(n) = log2(b) * logb(n)

= log2(blog
b

(n))
= log2(n)

for all positive n.

Why is Asymptotic Complexity So Important?

• Asymptotic complexity gives an idea of how rapidly the space/time
requirements grow as problem size increases.

• Suppose we have a computing device that can execute 1000 complex
operations per second. Here is the size problem that can be solved in
a second, a minute, and an hour by algorithms of different asymptotic
complexity:

211592n

1533910n3

1096144183n2

189724431n2

200,0004893140n log n

3,600,00060,0001000n

1 hour1 minute1 secondComplexity

What are the basic OPERATIONS?

• For searching and sorting algorithms, you can usually
determine big-O complexity by counting comparisons.

• Why?
• Usually end up doing some fixed number of arithmetic

and/or logical operations per comparison.
• Why don’t we count swaps for sorting?

– e.g., think about selection sort:
• max of n swaps
• but must do O(n2) comparisons
• swaps and comparisons have similar cost

• Is counting number of comparisons always right?
– No.
– e.g., selection sort on linked lists instead of arrays

What Operations Should We Count?
• Must do a detailed counting of all executed operations.
• Estimate number of primitive operations that RAM model (basic

microprocessor) must do to run program:
– Basic operation: arithmetic/logical operations count as 1 operation.

• even though adds, multiplies, and divides don’t (usually) cost the same
– Assignment: counts as 1 operation.

• operation count of righthand side of expression is determined separately.
– Loop: number of operations per iteration * number of loop iterations.
– Method invocation: number of operations executed in the invoked

method.
• ignore costs of building stack frames, …

– Recursion: same as method invocation, but harder to reason about.
– Ignoring garbage collection, memory hierarchy (caches), …

Example: Selection Sort

public static void selectionSort(Comparable[] a) { //array of size n
for (int i = 0; i < a.length; i++) { <-- cost = c1, n times

int MinPos = i; <-- cost = c2, n times
for (int j = i+1; j < a.length; j++) { <-- cost = c3, n*(n-1)/2 times

if (a[j].compareTo(a[MinPos]) < 0) <-- cost = c4, n*(n-1)/2 times
MinPos = j;} <-- cost = c5, n*(n-1)/2 times

Comparable temp = a[i]; <-- cost = c6, n times
a[i] = a[MinPos]; <-- cost = c7, n times
a[MinPos] = temp;}} <-- cost = c8, n times

Total number of operations:
= (c1+c2+c6+c7+c8)*n + (c3+c4+c5)*n*(n-1)/2
= (c1+c2+c6+c7+c8 -(c3+c4+c5)/2)*n + ((c3+c4+c5)/2)*n2

= O(n2)

Example: Matrix Multiplication

int n = A.length; <-- cost = c0, 1 time
for (int i = 0; i < n; i++) { <-- cost = c1, n times

for (int j = 0; j < n; j++) { <-- cost = c2, n*n times
sum = 0; <-- cost = c3, n*n times
for k = 0; k < n; k++) <-- cost = c4, n*n*n times

sum = sum + A[i][k]*B[k][j]; <-- cost = c5, n*n*n times
C[i][j] = sum; <-- cost = c6, n*n times

}
}

Total number of operations:
= c0 + c1*n + (c2+c3+c6)*n*n + (c4+c5)*n*n*n
= O(n3)

Remarks

• For asymptotic running time, we do not need to count precise number
of operations executed by each statement, provided that number of
operations is independent of input size. Just use symbolic constants
like c1, c2, … instead.

• Our estimate used a precise count for the number of times the j loop
was executed in selection sort (e.g., n*(n-1)/2). Could have said it was
executed n2 times and still have obtained the same big-O complexity.

• Once you get the hang of this, you can quickly zero in on what is
relevant for determining asymptotic complexity. For example, you can
usually ignore everything that is not in the innermost loop. Why?

• Main difficulty: estimating running time for recursive programs

Analysis of Merge-Sort
public static Comparable[] mergeSort(Comparable[] A, int low, int high) {
if (low < high - 1) //at least three elements <-- cost = c0, 1 time

{int mid = (low + high)/2; <-- cost = c1, 1 time
Comparable[] A1 = mergeSort(A, low, mid); <-- cost = ??, 1 time
Comparable[] A2 = mergeSort(A, mid+1, high); <-- cost = ??, 1 time
return merge(A1,A2);} <-- cost = c2*n + c3
....

Recurrence equation:
T(n) = (c0+c1) + 2T(n/2) + (c2*n + c3) <-- recurrence
T(1) = c4 <-- base case

How do we solve this recurrence equation?

Analysis of Merge-Sort

Recurrence equation:
T(n) = (c0+c1) + 2T(n/2) + (c2*n + c3)
T(1) = c4

First, simplify by dropping lower-order terms.

Simplified recurrence equation:
T(n) = 2T(n/2) + n
T(1) = 1

It can be shown that T(n) = O(nlog(n)) is a solution to this
recurrence.

What do we mean by “Solution”

• Recurrence: T(n) = 2T(n/2) + n
• Solution: T(n) = nlog2n

• To prove, substitute nlog2n for T(n) in recurrence:
T(n) = 2T(n/2) + n
nlog2n = 2(n/2)log2(n/2) + n
nlog2n = nlog2(n/2) + n
nlog2n = n(log2(n) - log2(2)) + n
nlog2n = n(log2(n) - 1) + n
nlog2n = nlog2(n) - n + n
nlog2n = nlog2n

Solving recurrences

• Solving recurrences is like integration --- no general
techniques known for solving recurrences.

• For CS 211, we just expect you to remember a few
common patterns.

• CS 280, learn a bag of tricks for solving recurrences that
arise in practice.

Cheat Sheet for Common Recurrences
Recurrence Relation Closed-Form Example

c(1) = a
c(n) = b + c(n-1) c(n) = O(n) Linear search

c(1) = a
c(n) = b*n + c(n-1) c(n) = O(n2) Quicksort

c(1) = a
c(n) = b + c(n/2) c(n) = O(log(n)) Binary search

c(1) = a
c(n) = b*n + c(n/2)

c(1) = a
c(n) = b + kc(n/k)

Cheat Sheet for Common Recurrences
Recurrence Relation Closed-Form Example

c(1) = a
c(n) = b + c(n-1) c(n) = O(n) Linear search

c(1) = a
c(n) = b*n + c(n-1) c(n) = O(n2) Quicksort

c(1) = a
c(n) = b + c(n/2) c(n) = O(log(n)) Binary search

c(1) = a
c(n) = b*n + c(n/2) c(n) = O(n)

c(1) = a
c(n) = b + kc(n/k)

Cheat Sheet for Common Recurrences
Recurrence Relation Closed-Form Example

c(1) = a
c(n) = b + c(n-1) c(n) = O(n) Linear search

c(1) = a
c(n) = b*n + c(n-1) c(n) = O(n2) Quicksort

c(1) = a
c(n) = b + c(n/2) c(n) = O(log(n)) Binary search

c(1) = a
c(n) = b*n + c(n/2) c(n) = O(n)

c(1) = a
c(n) = b + kc(n/k) c(n) = O(n)

Cheat Sheet for Common Recurrences cont.

Recurrence Relation Closed-Form Example

c(1) = a
c(n) = b*n + 2c(n/2) c(n) = O(nlog(n)) Mergesort

c(1) = a
c(n) = b*n + kc(n/k) c(n) = O(nlog(n))

c(1) = a
c(2) = b
c(n) = c(n-1) + c(n-2) + d c(n) = O(2n) Fibonacci

• Don’t just memorize these. Try to understand each one.
• When in doubt, guess a solution and see if it works (just like with integration).

Analysis of Quicksort: Tricky!
public static void quickSort(Comparable[] A, int l, int h) {

if (l < h)
{int p = partition(A,l+1,h,A[l]);
//move pivot into its final resting place;
Comparable temp = A[p-1];
A[p-1] = A[l];
A[l] = temp;

//make recursive calls
quickSort(A,l,p-1);
quickSort(A,p,h);}}

Incorrect attempt:
c(1) = 1
c(n) = n + 2c(n/2)

---- ---------
partition sorting the two partitioned arrays

Analysis of Quicksort: Tricky!
public static void quickSort(Comparable[] A, int l, int h) {

if (l < h)
{int p = partition(A,l+1,h,A[l]);
//move pivot into its final resting place;
Comparable temp = A[p-1];
A[p-1] = A[l];
A[l] = temp;

//make recursive calls
quickSort(A,l,p-1);
quickSort(A,p,h);}}

Incorrect attempt:
c(1) = 1
c(n) = n + 2c(n/2)

---- ---------
partition sorting the two partitioned arrays

What is wrong with this analysis?

Analysis of Quicksort: Tricky!

• Remember: big-O is worst-case complexity.
• What is worst-case for Quicksort?

– one of the partitioned subarrays is empty, and the other subarray has (n-1)
elements (nth element is the pivot)!

• So actual worst-case recurrence relation is:
c(1) = 1
c(n) = n + 1 + c(n-1)

------ -------------------------
partition sorting partitioned subarrays

• From table, c(n) = O(n2)
• On average (not worst-case) quicksort runs in nlog(n) time.
• One approach to avoiding worst-case behavior: pick pivot carefully so

that it always partitions array in half. Many heuristics for doing this,
but none of them guarantee worst case will not occur.

• If want to pick pivot as first element, sorted array is worst case. One
heuristic is to randomize array order before sorting!

Not all algorithms are created equal

• Programs for same problem can vary enormously in
asymptotic efficiency

fib(n) = fib(n-1) + fib(n-2)
fib(1) = 1
fib(2) = 1

• Here is recursive program for fib(n):

static int fib(int n) {
if (n <= 2) return 1;
else return fib(n-1) + fib(n-2);

}

c(n) = c(n-1) + c(n-2) + 2
c(2) = 1; c(1) = 1

• For this problem, problem size is n.
• It can be shown that T(n) = O(2n).
• Cost of computing fib(n) recursively is exponential in size n.

fib(5)

fib(4)

fib(3)

fib(2) fib(1)

fib(2)

fib(3)

fib(2) fib(1)

Iterative Code for Fibonnaci

fib(n) = fib(n-1) + fib(n-2); fib(1) = 1; fib(2) = 1
dad = 1;
grandad = 1;
current = 1;
for (i = 3; i = n; i++) {

grandad = dad;
dad = current;
current = dad + grandad;

}
return (current);

• Number of times loop is executed? Less than N.
• Number of computations per loop? Fixed amount of work.
• ==> complexity of iterative algorithm = O(n)
• Much, much, much, much, much, … better than O(2n)!

Summary

• Asymptotic complexity:
– measure of space/time required by an algorithm
– measure of algorithm, not problem

• Searching array:
– linear search O(n)
– binary search O(log(n))

• Sorting array:
– SelectionSort: O(n2)
– MergeSort: O(nlog(n))
– Quicksort: O(n2)

• sorts in place
• behaves more like O(nlog(n)) in practice

• Matrix operations:
– Matrix-vector product: O(n2)
– Matrix-matrix multiplication: O(n3)

Closing Remarks

• Might think that as computers get faster, asymptotic complexity and
design of efficient algorithms is less important.

• NOT TRUE!
• As computers get bigger/faster/cheaper, the size of data (N) gets larger
• Moore’s Law: ~ computers double in speed every 3 years
• Speed is O(2(years/3)).
• If problem size grows at least O(2(years/3)), then it’s a wash for O(n)

algorithms.
• For things worse than O(n) such as O(n2log(n)), we are rapidly losing

computational ground.
• Need more efficient algorithms now more than ever.

1 billion27 million1,000,000125,0001000

a 302-digit
number

a 91-digit
number

a 31-digit
number

a 16-digit
number1024

unimagin-ably
large

a 623-digit
number

a 161-digit
number

a 65-digit
number3.6 million

unimagin-ably
large

a 744-digit
number

a 201-digit
number

an 85-digit
number10 billion

1,000,00090,00010,0002500100

9966246966528233

5000150050025050

10 50 100 300 1000

nn
n!

2n

n3
n2

nl

og
n

 5
n

• protons in the known universe ~ 126 digits

• µsec since the big bang ~ 24 digits

- Source: D. Harel, Algorithmics

a 728-digit
number of
centuries

a 185-digit
number of
centuries

a 70-digit
number of
centuries

3.3 trillion years2.8 hr

a 75-digit
number of
centuries

400 trillion
centuries35.7 yr1 sec1/1000 sec

28.1 days2.8 hr5.2 min3.2 sec1/10 sec

9/100 sec1/100 sec1/400 sec1/2500 sec1/10,000 sec

10 20 50 100 300

nn
2n

n5
n2

• the big bang was 15 billion years ago (5*1017 secs)

- Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / µsec ?

Asymptotic complexity and efficient algorithms

• becomes more important as technology improves

• can handle larger problems

Human genome = 3.5 billion nucleotides ~ 1 Gb

@ 1 base-pair instruction / µsec

• n2 → 388445 years

• n log n → 30.824 hours

• n → 1 hour

