CS211
Computersand Programming

Lecture 12: Asymptotic Running Time of Algorithms

Announcments

There have been some corrections to the Assignment 3
programming portion:

— In SimpleList.java the remove method should take an int, not a
comparable.

— Inthe description of the deletion algorithm for a binary search tree,
It was erroneoudly stated a max node had to be aleaf. It now
correctly saysthat a max or min node can have at most one child.

Peter has sent out many clarifications and hints. Y ou

should read them.

Reading for today: Weiss Chapter 5. For now don’t worry
about Big-Omega, Big-Theta, and Little-Oh.

Remember that the Programming portion is due tomorrow,
but the written portion is due Wednesday.

Asymptotic Complexity: leading term analysis

o Comparing searching and sorting algorithms so far:
— Count worst-case number of comparisons as function of array size.

— Drop lower-order terms, floors/ceilings, and constants to come up
with asymptotic running time of algorithm.

 Wewill now generalize this approach to other programs:

— Count worst-case number of oper ations executed by program as a
function of input size.

— Formalize definition of big-O complexity to derive asymptotic
running time of algorithm.

Formal Definition of big-O Notation:

Let f(n) and g(n) be functions. We say f(n) is of order g(n),
written O(g(n)), if thereis a constant ¢ > 0 such that for all
but afinite number of positive values of n:

f(n) =c* g(n)
In other words, sooner or later g(n) overtakes f(n) as n getslarge.

Example: f(n) =n+5; g(n) =n. Show that f(n) = O(g(n)).
Choose c = 6:
f(n) =nt5=6*nfor al n>0.

Example: f(n) = 17n; g(n) = 3n?. Show that f(n) = O(g(n)).
Choose c = 6:
f(n)=17n=6* 3n?for all n>0.

A graphical view of big-O notation

c*g(n)

o fm) f(n) = O(gn)

n0)

n

e Toprovethat f(n) = O(g(n)), find an n, and ¢ such that
f(n) =c* g(n) for al n>n,.

« Wewill call the pair (c, ny) awitness pair for proving that
f(n) = O(g(n)).

For asymptotic complexity, base of logarithms does not matter.
Let us snhow that log,(n) = O(log,(n)) for any b > 1.

Need to find awitness pair (c, ny) such that:
log,(n) = c* log,(n) for al n>n,.

Choose (¢ = 1og,(b), ny = 0).

Thisworks because

c* 1ogy(n) = logy(b) * 10g,(n)
= |0g,(0/°9,")
= log,(n)

for al positiven.

Why is Asymptotic Complexity So Important?

« Asymptotic complexity gives an idea of how rapidly the space/time
reguirements grow as problem size increases.
e Suppose we have a computing device that can execute 1000 complex

operations per second. Hereisthe size problem that can be solved in
a second, a minute, and an hour by algorithms of different asymptotic

complexity:

Complexity 1 second 1 minute 1 hour

n 1000 60,000 3,600,000
nlogn 140 4893 200,000
n? 31 244 1897

3n? 18 144 1096

n3 10 39 153

2" 9 15 21

What are the basic OPERATIONS?

For searching and sorting algorithms, you can usually
determine big-O complexity by counting comparisons.

Why?
Usually end up doing some fixed number of arithmetic
and/or logical operations per comparison.

Why don’t we count swaps for sorting?

— e.g., think about selection sort:
e max of n swaps
 but must do O(n?) comparisons
 swaps and comparisons have similar cost
|s counting number of comparisons always right?

— No.
— e.g., seection sort on linked lists instead of arrays

What Operations Should We Count?

 Must do adetailed counting of all executed operations.

» Estimate number of primitive operations that RAM model (basic
Mi croprocessor) must do to run program:

— Basic operation: arithmetic/logical operations count as 1 operation.

» even though adds, multiplies, and divides don’t (usually) cost the same
— Assignment: counts as 1 operation.

 operation count of righthand side of expression is determined separately.
— Loop: number of operations per iteration * number of loop iterations.

— Method invocation: number of operations executed in the invoked
method.

 ignore costs of building stack frames, ...
— Recursion: same as method invocation, but harder to reason aboui.
— Ignoring garbage collection, memory hierarchy (caches), ...

Example: Selection Sort

public static void selectionSort(Comparabl€e]] a) { //array of sSizen

for (inti =0; 1 <alength; i++) { <-- cost = cl, ntimes
int MinPos =1, <-- cost = c2, ntimes
for (int] =i+1;] <alength; j++) { <-- cost = c3, n*(n-1)/2 times
If (a]j].compareTo(aMinPos|) < 0) <-- cost = ¢4, n*(n-1)/2 times
MinPos=j;} <-- cost = ¢5, n*(n-1)/2 times
Comparable temp = d[i]; <-- cost = 6, ntimes
ai] = aMinPos]; <-- cost = c7, ntimes
<-

a[MinPos| = temp;}} - cost = 8, ntimes

Total number of operations:
= (cl+c2+c6+c/7+c8)* n + (c3+c4+ch)* n* (n-1)/2
= (c1+c2+c6+c7+c8 -(c3+cd+c5)/2)* n + ((c3+c4+ch)/2)* n?
= 0O(n?)

Example: Matrix Multiplication

int n = A.length; <-- cost = cO, 1 time
for (inti =0;i<n;i++){ <-- cost = c1, ntimes
for (intj =0;) <n;j++){ <-- cost = C2, n**ntimes
sum = 0; <-- cost = 3, n**ntimes
for k =0; k <n; k++) <-- cost = ¢4, n*n*n times
sum = sum + A[i][K]*B[K][j]; <-- cost = 5, n*n*n times
Cli][j] = sum; <-- COSt = €6, N*ntimes
}
}

Total number of operations:
=c0 + c1*n + (c2+c3+c6)*n*n + (c4+chH)* n*n*n
= 0O(n3)

Remarks

For asymptotic running time, we do not need to count precise number
of operations executed by each statement, provided that number of
operationsisindependent of input size. Just use symbolic constants
likecl, c2, ... instead.

Our estimate used a precise count for the number of timesthe | loop
was executed in selection sort (e.g., n*(n-1)/2). Could have said it was
executed n? times and still have obtained the same big-O complexity.

Once you get the hang of this, you can quickly zero in on what is
relevant for determining asymptotic complexity. For example, you can
usually ignore everything that is not in the innermost loop. Why?

Main difficulty: estimating running time for recursive programs

Analysis of Merge-Sort

public static Comparable[] mergeSort(Comparable]] A, int low, int high) {

If (low <high-1)//at least three elements <-- cost = cO, 1time
{int mid = (low + high)/2; <--cost =cl, 1time
Comparable]] A1 = mergeSort(A, low, mid); <--cost =7??, 1time
Comparable]] A2 = mergeSort(A, mid+1, high); <-- cost = 7?7, 1time
return merge(A1,A2);} <-- cost =c2*n + c3

Recurrence equation:
T(n) = (cO+cl) + 2T(n/2) + (c2*n + c3) <-- recurrence
T(1)=c4 <-- base case

How do we solve this recurrence equation?

Analysis of Merge-Sort

Recurrence equation:
T(n) = (cO+cl) + 2T(n/2) + (c2*n + c3)
T1)=c4

First, ssmplify by dropping lower-order terms.

Simplified recurrence eguation:
T(n) =2T(n/2) + n
T(1) =1

It can be shown that T(n) = O(nlog(n)) isasolution to this
recurrence.

What do we mean by “ Solution”

 Recurrence: T(n) =2T(n/2) +n
e Solution: T(n) = nlog,n

» To prove, substitute nlog,n for T(n) in recurrence:
T(n) = 2T(n/2) +n

nlog,n = 2(n/2)log,(n/2) + n
nlog,n = nlog,(n/2) +n

nlog,n = n(logy(n) - 10g,(2)) +n
nlog,n = n(log,(n) - 1) +n
nlog,n = nlog,(n)-n+n
nlog,n = nlog,n

Solving recurrences

o Solving recurrencesislike integration --- no general
techniques known for solving recurrences.

o For CS 211, wejust expect you to remember afew
common patterns.

e CS 280, learn abag of tricks for solving recurrences that
arise in practice.

Cheat Sheet for Common Recurrences

Recurrence Relation Closed-Form Example
c(l)=a

c(n) =b+c(n-1) c(n) = O(n) Linear search
c(l)=a

c(n) =b*n+ c(n-1) c(n) = O(n?) Quicksort
c(l)=a

c(n) = b+ c(n/2) c(n) = O(log(n)) Binary search
c(l)=a

c(n) =b*n+ c(n/2)

c(l)=a
c(n) = b + kc(n/k)

Cheat Sheet for Common Recurrences

Recurrence Relation Closed-Form Example
c(l)=a

c(n) =b+c(n-1) c(n) = O(n) Linear search
c(l)=a

c(n) =b*n+ c(n-1) c(n) = O(n?) Quicksort
c(l)=a

c(n) = b+ c(n/2) c(n) = O(log(n)) Binary search
c(l)=a

c(n) =b*n+ c(n/2) c(n) = O(n)

c(l)=a

c(n) = b + kc(n/k)

Cheat Sheet for Common Recurrences

Recurrence Relation Closed-Form Example
c(l)=a

c(n) =b+c(n-1) c(n) = O(n) Linear search
c(l)=a

c(n) =b*n+ c(n-1) c(n) = O(n?) Quicksort
c(l)=a

c(n) = b+ c(n/2) c(n) = O(log(n)) Binary search
c(l)=a

c(n) =b*n+ c(n/2) c(n) = O(n)

c(l)=a

c(n) = b + kc(n/k) c(n) = O(n)

Cheat Sheet for Common Recurrences cont.

Recurrence Relation Closed-Form Example
c(l)=a

c(n) = b*n + 2¢c(n/2) c(n) = O(nlog(n)) Mergesort
c(l)=a

c(n) = b*n + ke(n/k) c(n) = O(nlog(n))

c(l)=a

c(2) =Db

c(n) =c(n-1) +c(n-2) +d c(n) = O(2") Fibonacci

 Don't just memorizethese. Try to understand each one.
 When in doubt, guess a solution and see if it works (just like with integration).

Analysis of Quicksort: Tricky!

public static void quickSort(Comparable]] A, int 1, int h) {
if (I <h)
{int p = partition(A,1+1,h,A[l]);
//move pivot into its final resting place;
Comparable temp = A[p-1];
Alp-1] = A[l];
All] = temp;
//make recursive calls
quickSort(A,l,p-1);
quickSort(A,p,h);}}

Incorrect attempt:
c(l) =1
cn)=n + 2c(n/2)

partition sorting the two partitioned arrays

Analysis of Quicksort: Tricky!

public stetic void quickSort(Comparable]] A, int 1, int h) {
if (I <h)
{int p = partion(A,lI+1,h,A[l]);
//move pivot irmglts final resting place;
Comparable temp ™A [p-1];
Alp-1] = A[l];
All] = temp;
//make recursive calls
quickSort(A,l,p-1);
guickSort(A,p,h);}

| ncorrect attempjg
c(l)=1
c(n) 3 + 2¢(n/2)

partition sorting the two partitioned arrays

What is wrong with this analysis?

Analysis of Quicksort: Tricky!

Remember: big-O Is worst-case complexity.

What is worst-case for Quicksort?

— one of the partitioned subarrays is empty, and the other subarray has (n-1)
elements (nth element is the pivot)!

So actual worst-case recurrence relation is:
c(l) =1
c(n)=n +1 + c(n-1)
partition sorting partitioned subarrays
From table, c(n) = O(n?)
On average (not worst-case) quicksort runs in nlog(n) time.

One approach to avoiding worst-case behavior: pick pivot carefully so
that it always partitions array in half. Many heuristics for doing this,
but none of them guarantee worst case will not occur.

If want to pick pivot asfirst element, sorted array isworst case. One
heuristic is to randomize array order before sorting!

Not all algorithms are created egual

e Programs for same problem can vary enormously in
asymptotic efficiency

fib(n) = fib(n-1) + fib(n-2)
fib(1) = 1
fib(2) = 1

 Hereisrecursive program for fib(n):

static int fib(int n) {
If (n<=2) return 1;
elsereturn fib(n-1) + fib(n-2);
}

fib(5)

— T

fib(4) fib(3)
fib(3) fib(2) fib(2) fib(1)
fib(2) fib(1)

c(n) =c(n-1) + ¢(n-2) + 2
c2)=1, c(1)=1

 For this problem, problem sizeisn.
|t can be shown that T(n) = O(2").
o Cost of computing fib(n) recursively is exponential in sizen.

lterative Code for Fibonnaci

fib(n) =fib(n-1) + fib(n-2); fib(1) =1; fib(2)=1

dad =1;
grandad = 1,
current = 1,
for(1=3; i=n; i++){

grandad = dad;

dad = current;

current = dad + grandad;

}

return (current);

Number of times |loop is executed? Lessthan N.

Number of computations per loop? Fixed amount of work.
==> complexity of iterative algorithm = O(n)

Much, much, much, much, much, ... better than O(2")!

Summary

Asymptotic complexity:
— measure of space/time required by an algorithm
— measure of algorithm, not problem
Searching array:
— linear search O(n)
— hinary search O(log(n))
Sorting array:
— SelectionSort: O(n?)
— MergeSort: O(nlog(n))
— Quicksort: O(n?)
» sortsin place
» behaves more like O(nlog(n)) in practice
Matrix operations:
— Matrix-vector product: O(n?)
— Matrix-matrix multiplication: O(n3)

Closing Remarks

Might think that as computers get faster, asymptotic complexity and
design of efficient algorithmsis lessimportant.

NOT TRUE!

As computers get bigger/faster/cheaper, the size of data (N) gets larger
Moore' s Law: ~ computers double in speed every 3 years

Speed is O(2veas’d)),

If problem size grows at least O(2ve¥s'3)) then it’s awash for O(n)
algorithms.

For things worse than O(n) such as O(nlog(n)), we are rapidly losing
computational ground.

Need more efficient algorithms now more than ever.

n2 nlogn 5n

n3

2n

nn

10

50

33

100

1000

1024

3.6 million

10 billion

50

250

282

2500

125,000

a 16-digit
number

a 65-digit
number

an 85-digit
number

100

500

665

10,000

1,000,000

a 31-digit
number

a 161-digit
number

a 201-digit
number

300

1500

2469

90,000

27 million

a 91-digit
number

a 623-digit
number

a 744-digit
number

protons in the known universe ~ 126 digits

* NBec since the big bang ~ 24 digits

1000

5000

9966

1,000,000

1 billion

a 302-digit
number

unimagin-ably
large

unimagin-ably
large

- Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / nsec ?

N
c

2n

nn

10

1/10,000 sec

1/10 sec

1/1000 sec

2.8 hr

20

1/2500 sec

3.2 sec

1 sec

3.3 trillion years

50

1/400 sec

5.2 min

35.7yr

a 70-digit
number of
centuries

100

1/100 sec

2.8 hr

400 trillion
centuries

a 185-digit
number of
centuries

300

9/100 sec

28.1 days

a 75-digit
number of
centuries

a 728-digit
number of
centuries

* the big bang was 15 billion years ago (5*1017 secs)

- Source: D. Harel, Algorithmics

Asymptotic complexity and efficient algorithms

* becomes more important as technology improves

« can handle larger problems

Human genome = 3.5 billion nucleotides ~ 1 Gb
@ 1 base-pair instruction / nsec
N’ ® 388445 years

Growth of GenBank

=
o
|

nlogn ® 30.824 hours
n ® 1hour

Sequences (millions)

I Ease Fairs

- N 15 -3 Ll o ~l o 0w
I L L L L L L L L

—e— SEQUENCES

0 +—+—————r—

,\g%q’ ,\gﬁb‘ ,\Q%C:' ,\9%‘6 ,\Q‘c_‘lg ,\99(3” ,\QC_‘P‘ ,\996 ,\99‘&' ,LQQQ'

11000

9500

8000

6500

5000

3500

2000

500

Base Pairs of DNA (millions)

