CS211
Computersand Programming

Lecture1l: Sorting

Announcements

e Quiz tomorrow on lists, trees, searching and sorting
o Assignment 3 Written part coming soon

* Reading: For Sorting, Weiss Chapter 8. Y ou may also
want to read 19.1 and 19.2 on binary search trees.

Sorting

Binary search works great, but how do we create a sorted
array in thefirst place?

Sorting algorithms:

— Sdlection sort: O(n?) time

— Merge sort: O(nlog,(n)) time
— Quicksort: O(n?) time

Sel ectionSort

Input: array of Comparables
Output: same array sorted in ascending order
Algorithm:

1.

assume N is size of array

Examine al elements from 0 to (N-1), find the smallest one and
swap it with the O element of the input array.

Examine al elementsfrom 1 to (N-1), find the smallest in that
part of the array an swap it with the 1% element of the array

In general, at the it step, examine array elements from i to (N-1),
find the smallest element in that range, and exchange with the ith
element of the array.

Donewheni = (N-1).

SelectionSort

Easy to show SelectionSort requires N* (N-1)/2
comparisons, if N isthe length of the array to be sorted

SelectionSort is an O(N?) algorithm since the leading term
IS N2 (ignore constant coefficientsin big-O notation)

Question: can we find away to speed up SelectionSort?

Speed Up SelectionSort?

When you have a O(N?) agorithm, often paysto break a
problem into smaller subproblems, solve subproblems
separately, and then assemble final solution.

Rough argument: suppose you break problem into k
pieces. Each piece takes O((N/k)?) time, so time for doing
all k piecesisroughly k * O(N4/k?) = 1/k * O(N?) time.

If we divide problem into two subproblems that can be
solved independently, we can halve the running time!

Caveat: the partitioning and assembly processes should not
be expensive.

Can we apply this divide and conquer approach to sorting?

MergeSort

e Quintessential divide-and-conquer algorithm
 Divide array into equal parts, sort each part, then merge

e Three questions:

— Q1: How do we divide array into two equal parts?
— Al: Useindicesinto array.

— Q2: How do we sort the parts?
— A2: call MergeSort recursively!

— Q3: How do we merge the sorted subarrays?
— A3: Have to write some (easy) code.

Merging sorted arrays al and a2

Create an array m whose size = size of al + size of a2

Keep three indices:

— plinto al

— p2into a2

— pmintom

Initialize all three indicesto O (start of each array)
Compare element al[pl] with a2[p2], and move smaller
Into m[pm].

Increment the appropriate indices (pl or p2), and pm.

If either al or a2 is empty, copy remaining elements from
the other array (a2 or al, respectively) into m.

Merging Sorted Arrays

-

pm 417|7(9]10
J array 1
6|7 |77 - 02
merged array
3(6|7(8 12

MergeSort

Asymptotic complexity: O(nlog,(n))
Much faster than O(n?)
Disadvantage: need extra storage for temporary arrays

In practice, this can be a serious disadvantage, even though
MergeSort is asymptotically optimal for sorting.

Can do MergeSort in place, but thisis very tricky.
Good sorting algorithms that do not use extra storage?
Yes. Quicksort.

QuickSort

e Intuitiveidea:

— Given an array A to sort, and a pivot value P

— Partition array elements into two subarrays, SX and SY

— SX contains only elements less than or equal to P

— SY contains only elements greater than P

— Sort subarrays SX and SY separately

— Concatentate (not merge!) sorted SX and SY to produce result

— Sort(A) = Sort(SX<=P) + Sort(SY>P)

— Divide and conquer if size SX and SY is about half size A
— Concatentation is easier than merging

20| 31|24 | 19| 45| 56| 4 |65 | 5 72| 14| 99

i QuickSort i QuickSort
4 14 | 19 20 24| 31| 45| 56| 65| 72| 99
4 | 5 14 {19 |20 |24 | 31|45 |56 |65 | 72 | 99

QuickSort

Main advantages.
— Divide and conqueror
— Sorting can be done in-place (no extra arrays need to be created)

Key problems:
— How do we partition array in place?
— How do we pick pivot to split array roughly in half?

If we can partition in place, can have a quickSort method
of the form:

void quickSort (int[] A, int low, int high)
//quicksort values in array between low and high

|n-place Partitioning

How can we move al the blues to the left of all the reds?

1. Keeptwoindices, LEFT and RIGHT.
2. Initialize LEFT at start of array and RIGHT at end of array.
3. Invariant: all elementsto left of LEFT are blue
al elementsto right of RIGHT are red
4. Keep advancing indices until they pass, maintaining invariant

‘BN ER " BR BE EE BE BR BE BE BR BR

X X

‘BN ER " BR BE EE BE BR BE BE BR BR
X X

‘BN ER " BR BE EE BE BR BE BE BR BR
X X

Now neither LEFT nor RIGHT can advance and maintain invariant.

7'

7

We can swap red and blue pointed to by LEFT and RIGHT indices. SWwap

After swap, indices can continue to advance until next conflict.

7'

7'

| >0 >0

N >0 >0

> | > B

> | > B

SWwap

SWap

Once indices cross partitioning is done.

If you replace blue with ‘> and red with ‘=*, thisis

exactly what we need for quicksort partitioning.

Notice that after partitioning, array is partially sorted.
Recursive calls on partitioned subarrays will sort subarrays.
No need to concatenate arrays since we partitioned in place.

QuickSort

e How to pick pivot?
— 1dedl pivot is median since this splits data in half
— unfortunately, computing median exactly is expensive
— Heuristics:
o Usefirst valuein array as pivot

 Usemiddlevauein array as pivot
e Usemedian of firgt, last, and middle valuesin array as pivot

e QuickSort isnot as efficient as SelectionSort for very
small N. Often switch to ssmpler sort method when a
subarray haslength < small _N.

o Worst case for QuickSort iswhen array already is sorted is
pivot isfirst element in array!

Summary

e Sorting methods discussed in lecture:
— SelectionSort: O(N?)
» easy to code
» sortsin place

— MergeSort: O(Nlog(N))
« asymptotically optimal sorting method
» most implementations require extra array allocation
— Quicksort: O(N?)
» behaves more like Nlog(N) in practice
e sortsin place
 Many other sorting methods in literature:
— Heap sort (later in CS211)
— Shell sort
— Bubble sort
— Radix sort

