
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 10: Introduction to Searching and 
Complexity



Motivation

• Have been talking a lot about how to make writing 
programs efficient
– interfaces, encapsulation, inheritance, type checking, 

recursion vs. iteration, …

• Haven’t talked much about how to make the 
programs themselves run efficiently
– how long does it take program to run?
– efficient data structures 
– fast algorithms



Organization

• Searching in arrays
– Linear search
– Binary search

• Asymptotic complexity of algorithms



Linear search

• Input: 
– unsorted array A of Comparables
– value v of type Comparable

• Output: true if v is in array A, false otherwise
• Algorithm: examine the elements of A in some 

order till you either
– find v: return true, or
– you have unsuccessfully examined all the elements of 

the array: return false



//linear search on possibly unsorted array
public static boolean linearSearch(Comparable[] a, Object v) {
int i = 0;
while (i < a.length)
if (a[i].compareTo(v) == 0) return true;
else i++;

return false;
}

7  4  6  19  3  7  8  10  32  54  67  98Linear search:



Binary search
• Input: 

– sorted array A[0..n-1] of Comparable
– Value v of type Comparable

• Output: returns true if v is in the array; false otherwise
• Algorithm: similar to looking up telephone directory

– Let m be the middle element of the array 
– If (m ==v) return true
– If (m < v) search right half of array 
– If (m > v) search left half of array 

-2 0 6 8 9 1113 22 34 45 56 78

1 2 3Search for 94

12
Search for 6

4



//left and right are the two end points of interval of array
public static boolean binarySearch(Comparable[] a, int lo, int hi, Object v) {

int  middle = (lo + hi)/2;
int c = A[middle].compareTo(v);

//base cases
if (c == 0) return true;
//check if array interval has only one element
if (lo == hi) return false;

//array interval has more than one element, so continue searching
if (c  > 0) return binarySearch(a, lo, middle -1, v);  //left half
else         return binarySearch(a, middle+1, hi, v); // right half

}

Invocation: assume array named data contains values

….. binarySearch(data, 0, data.length -1, v)…..



Comparison of algorithms

• If you run binary search and linear search on a 
computer, you will find that binary search runs 
much faster than linear search.

• Stating this precisely can be quite subtle.
• One approach: asymptotic complexity of programs

– big-O analysis
• Two steps:

– Compute running time of program
– Running time => asymptotic running time



Comparison of Algorithms

Linear vs. Binary Search

0

5

10

15

20

25

0 5 10 15 20 25

Number of Items in Array

Linear Search Binary Search



Comparison of Algorithms

Linear vs. Binary Search

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

Number of Items in Array

Linear Search Binary Search



Comparison of Algorithms

Linear vs. Binary Search

0

5000000

10000000

15000000

20000000

25000000

0 5000000 10000000 15000000 20000000 25000000

Number of Items in Array

Linear Search Binary Search



Comparison of Algorithms

Linear vs. Binary Search

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000 1000000 1000000
0

1E+08

Number of Items in Array

Linear Search Binary Search



Running time of algorithms

• In general, running time of a program such as 
linear search depends on many factors:
1. machine on which program is executed

• laptop vs. supercomputer
2. size of input (array A)

• big array vs. small array
3. values in array and value we search for

• v is first element in array vs. v is not in array

• To talk precisely about running times of 
programs, we must specify all three factors 
above. 



Defining running time of programs

1. Machine on which programs are executed.
– Random-access Memory (RAM) model of computing

• Measure of running time: number of operations executed 

– Other models used in CS: Turing machine, Parallel 
RAM model, …

– Simplified RAM model for now:
• Each data comparison is one operation.
• All other operations are free.
• Evaluate searching/sorting algorithms by estimating number 

of comparisons they execute
– it can be shown that for searching and sorting algorithms, total

number of operations executed on RAM model is proportional 
to number of data comparisons executed



Defining running time (contd.)

2. Dependence on size of input
– Rather than compute a single number, we will 

compute a function from problem size to number of 
comparisons.

• (eg) f(n) = 32n2 – 2n + 23 where is problem size

– Each program has its own measure of problem size.
– For searching/sorting, natural measure is size of array 

on which you are searching/sorting.



Define running time (contd.)

3. Dependence of running time on input 
values

([3,6], 2)

([3,6], 3)

([-4,5], -9)

• Consider set In of possible 
inputs of size n.

• Find number of comparisons
for each possible input in this set.

• Compute
•Average: hard to compute usually
•Worst-case: easier to compute

•We will use worst-case complexity.

…….

Possible inputs of size 2
for linear/binary search



7  4  6  19  3  7  8  10  32  54  67  98Linear search:

-2 0 6 8 9 1113 22 34 45 56 78

Binary search: sorted array of size n

Computing running times

Assume array is of size n.
Worst-case number of comparisons: v is  not in array. 
Number of comparisons = n.
Running time of linear search:  TL(n) = n

Worst-case number of comparisons: v is not in array.

TB(n) =  log2(n) + 1



Running time => 
Asymptotic running time

+ 1

Linear search:   TL(n) =    n

Binary search:  TB(n) = log2(n)

We are really interested only in comparing running times 
for large problem sizes.

•For small problem sizes, running time is small enough
that we may not care which algorithm we use.

For large values of n, we can drop the “+1” term and the floor 
operation, and keep only the leading term, and say that
TB(n) => log2(n) as n gets larger.

Formally, TB(n) = O(log2(n))  and TL(n) = O(n)



Rules for computing 
asymptotic running time

• Compute running time as a function of input 
size.

• Drop lower order terms.
• From the term that remains, drop 

floors/ceilings as well as any constant 
multipliers.

• Result: usually something like O(n), O(n2), 
O(nlog(n)), O(2n), etc.



Summary of informal introduction

• Asymptotic running time of a program
1. Running time: compute worst-case number of 

operations required to execute program on 
RAM model as a function of input size.
– for searching/sorting algorithms, we will compute 

only the number of comparisons

2. Running time => asymptotic running time: 
keep only the leading term(s) in this function. 


