CS211
Computersand Programming

L ecture 10: Introduction to Searching and
Complexity

Motivation

e Have been talking alot about how to make writing
programs efficient
— Interfaces, encapsulation, inheritance, type checking,
recursion vs. iteration, ...
« Haven't talked much about how to make the
programs themselves run efficiently
— how long does it take program to run?
— efficient data structures
— fast algorithms

Organization

e Searching in arrays
— Linear search
— Binary search
o Asymptotic complexity of agorithms

Linear search

e |Input:
— unsorted array A of Comparables
— value v of type Comparable

e Qutput: trueif visinarray A, false otherwise

 Algorithm: examine the elements of A in some
order till you either
— find v: return true, or

— you have unsuccessfully examined all the elements of
the array: return false

//linear search on possibly unsorted array
public static boolean linearSearch(Comparable[] a, Object v) {
Inti=0;
while (i < a.length)
If (a[i].compareTo(v) == 0) return true;
else i++;
return false;

}

Linear search: 71416/19/3|7|8/10|32|54|67|98

Binary search

e |nput:
— sorted array A[0..n-1] of Comparable
— Valuev of type Comparable

o Qutput: returnstrueif v isinthe array; false otherwise

o Algorithm: similar to looking up telephone directory
— Let m be the middle element of the array
— If (m ==v) return true
— If (m < v) search right half of array
— If (m > v) search left half of array

@ @

Search for 6 l l
-2/1016 1113223445 |56|78
Search for 94 T T T T
@ 2 G @

//left and right are the two end points of interval of array

public static boolean binarySearch(Comparable[] a, int lo, int hi, Object v) {
int middle = (lo + hi)/2;
int c = A[middle].compareTo(v);

//lbase cases

if (c == 0) return true;

//lcheck if array interval has only one element
If (lo == hi) return false;

/larray interval has more than one element, so continue searching

if (c > 0) return binarySearch(a, lo, middle -1, v); //left half
else return binarySearch(a, middle+1, hi, v); // right half

Invocation: assume array named data contains values

Comparison of algorithms

If you run binary search and linear search on a
computer, you will find that binary search runs
much faster than linear search.

Stating this precisely can be quite subtle.

One approach: asymptotic complexity of programs
— big-O analysis

TwO steps:

— Compute running time of program
— Running time => asymptotic running time

Comparison of Algorithms

Linear vs. Binary Search

Number of Items in Array

—#— Linear Search Binary Search

Comparison of Algorithms

800

700

600

500

400

300

200

100

Linear vs. Binary Search

300 400 500 600 700 800
Number of Items in Array

—#— Linear Search Binary Search

Comparison of Algorithms

Linear vs. Binary Search

25000000

20000000

15000000

10000000

5000000

0 . | | | |
0 5000000 10000000 15000000 20000000 25000000

Number of Items in Array

—®&— Linear Search Binary Search

Comparison of Algorithms

Linear vs. Binary Search

100000000

10000000

1000000

100000

10000

1000

100

10

1 10 100 1000 10000 100000 1000000 1000000 1E+08

Number of Items in Array 0

—#&— Linear Search Binary Search

Running time of algorithms

* |ngenerd, running time of a program such as
linear search depends on many factors.
1. machine on which program is executed
laptop vs. supercomputer
2. Sizeof input (array A)
big array vs. small array

3. valuesin array and value we search for
visfirst element in array vs. visnot in array

o Totalk precisaly about running times of
programs, we must specify all three factors
above.

Defining running time of programs

1. Machine on which programs are executed.

— Random-access Memory (RAM) model of computing
Measure of running time: number of operations executed

— Other models used in CS: Turing machine, Paralle
RAM modd, ...

— Simplified RAM model for now:
» Each data comparison is one operation.
o All other operations are free.
» Evaluate searching/sorting algorithms by estimating number

of comparisons they execute

— it can be shown that for searching and sorting algorithms, total
number of operations executed on RAM model is proportional
to number of data comparisons executed

Defining running time (contd.)

2. Dependence on size of input

— Rather than compute a single number, we will
compute a function from problem size to number of
comparisons.

e (eg) f(n) =32n%—2n+ 23 whereis problem size

— Each program has its own measure of problem size.

— For searching/sorting, natural measure is size of array
on which you are searching/sorting.

Define running time (contd.)

3. Dependence of running time on input
values

* Consider set |, of possible
Inputs of size n.

([3,6], 2) e Find number of comparisons
for each possible input in this set.
([3,6], 3) « Compute

*Average: hard to compute usually
*\Worst-case: easier to compute
Possible inputs of size 2 *We will use worst-case complexity.

for linear/binary search

Computing running times

Linear search: 71416/19/3|7|8/10|32|54|67|98

Assume array is of sizen.

Worst-case number of comparisons: v is not in array.
Number of comparisons = n.

Running time of linear search: T (n) =n

Binary search: sorted array of sizen

-2/016] 8 1911113 22/34|45|56|78

Worst-case number of comparisons: v isnot in array.

Tg(n) =H092("M +1

Running time =>
Asymptotic running time

Linear search: T (n)= n
Binary search: Tg(n) = |10g,(n)| + 1

We are redly interested only in comparing running times

for large problem sizes.
*For small problem sizes, running time is small enough

that we may not care which algorithm we use.

For large values of n, we can drop the “+1” term and the floor
operation, and keep only the leading term, and say that
Tg(n) =>log,(n) as n getslarger.

Formally, T(n) = O(log,(n)) and T, (n) = O(n)

Rules for computing
asymptotic running time

Compute running time as a function of input
size.
Drop lower order terms.

From the term that remains, drop
floorg/ceilings as well as any constant
multipliers.

Result: usually something like O(n), O(n?),
O(nlog(n)), O(2"), etc.

Summary of informal introduction

e Asymptotic running time of a program
1. Running time: compute worst-case number of
operations required to execute program on
RAM moddl as afunction of input size.
— for searching/sorting algorithms, we will compute
only the number of comparisons
2. Running time => asymptotic running time:
keep only the leading term(s) in this function.

