CS211
Computersand Programming

Generics and the For-Each loop
(From Sun’sonline Java tutorials)



The For-Each loop

e Over Collections and Arrays, Java 5 supports
enhanced f or loop functionality.

Instead of
voi d cancel Al l (Col | ecti on<Ti mer Task> c) {
for (lterator<TinmerTask> 1 = c.iterator();

| . hasNext(); ) i.next().cancel();
}

We can write
voi d cancel Al l (Col | ecti on<Ti mer Task> c) {
for (TinmerTask t : c)
t.cancel ();

}
Read the lower for loop as “for each TimerTask tin c”



Restrictions on For-Each

* Only works for collections in the Java
Collections Framework (and arrays)

 There are many cases where you’ll need to
use a normal for loop (like when you need
access to the index, or want to call the remove
method from the iterator



Why Generics?

* The motivation for generics is for code to be cleaner, easier
to write, and safer. The code below isn’t pretty:

/| Renoves 4-letter words fromc.
/| El ements nmust be strings
static void expurgate(Collection c) {

for (Iterator i = c.iterator(); i.hasNext();)
1f (((String) i.next()).length() == 4)
| . renmove();

}

« ACol | ecti on contains elements of type (bj ect

 The cast to St ri ng require that the programmer know the
dynamic type of i . next (). We’ll only find out if the cast
works at runtime.



Using Generics
e Here’s the same method using generics:

// Renoves the 4-letter words fromc
static void expurgate(Collection<String> c) {

for(lterator<String>1 = c.iterator();i.hasNext();)
1 f (I.next().length() == 4)
| . renmove();
}

 The compiler now knows the type of element in the
Collection, so it knows that i . next () returnsa Stri ng.



Defining Generics

public interface List<E> {
voi d add(E x);
|terator<E> iterator();

}

public interface Iterator<kE> {
E next();
bool ean hasNext () ;

« Here E is the the formal type parameter (or just
parameter) for the interfaces Li st and |terator

 When you define a generic class or interface in this
way, you can then use the parameter just as you
would a normal type in your definitions.



Generics and Subtypes

Subtyping with generics is harder than you think:

Li st<String> |s
Li st<Cbhject> |0

= new ArrayList<String>();

=1ls; // This is illegal

Because St ri ng is a subtype of (bj ect , you may be tempted
to think Li st <St ri ng> is a subtype of Li st <Obj ect >. This

IS wrong!

From the tutorial:

“In general, if Foo is a subtype (subclass or subinterface) of Bar, and
G Is some generic type declaration, it isnot the case that G<Foo>isa
subtype of G<Bar>. Thisis probably the hardest thing you need to
learn about generics, because it goes against our deeply held
Intuitions.”



Wildcards

Sometimes the parameter will be too restrictive:
void printCollection(Collection<Ooject> c){
for (Ooject e : c¢) {
Systemout.println(e);
}
The problem is the Col | ecti on<Qbj ect > isn’t a
supertype of every Col | ecti on<E>. The above
method only works on a collection of Qbj ect s.

We can fix this using Wildcards:
void printCollection(Collection<?> c) {
for (Ooject e : c¢) {
Systemout. println(e);

1}



Using Wildcards

« Think of the <?> as denoting any possible type. G<?>
IS a supertype of every G<T>.

* Since we don’t actually know the parameter when
using wildcards, typically we have to use Qbj ect in

the method definition.

« Sometimes you want to be slightly more restrictive:

<? extends Foo>// restricts to T> where T mnust
/| extend FOO

G<? super Bar>// restricts to <T> where Bar nust
[lextend T



Generic Methods

e This won’t work:
static void fromArrayToCol | ection(Qbject[] a, Collection<?> c)
{ for (Object o : a) {
c.add(o); // conpile tine error

}}
 The problem is that we don’t know what kind of
Collection c is, so we can add and o of type Object.

 The solution: use parameters in method declaration:

static <T> void fromArrayToCol l ection(T[] a, Collection<T> c)
{ for (T o : a) {
c.add(o); // correct

1}

 The method now can refer to a parameter T
anywhere in the definition.



