
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Generics and the For-Each loop
(From Sun’s online Java tutorials)

The For-Each loop
• Over Collections and Arrays, Java 5 supports

enhanced for loop functionality.

Instead of
void cancelAll(Collection<TimerTask> c) {

for (Iterator<TimerTask> i = c.iterator();
i.hasNext();) i.next().cancel();

}

We can write
void cancelAll(Collection<TimerTask> c) {

for (TimerTask t : c)
t.cancel();

}

Read the lower for loop as “for each TimerTask t in c”

Restrictions on For-Each
• Only works for collections in the Java

Collections Framework (and arrays)

• There are many cases where you’ll need to
use a normal for loop (like when you need
access to the index, or want to call the remove
method from the iterator

Why Generics?
• The motivation for generics is for code to be cleaner, easier

to write, and safer. The code below isn’t pretty:

//Removes 4-letter words from c.
//Elements must be strings
static void expurgate(Collection c) {
for (Iterator i = c.iterator(); i.hasNext();)

if (((String) i.next()).length() == 4)
i.remove();

}
• A Collection contains elements of type Object
• The cast to String require that the programmer know the

dynamic type of i.next(). We’ll only find out if the cast
works at runtime.

Using Generics

• Here’s the same method using generics:

// Removes the 4-letter words from c
static void expurgate(Collection<String> c) {
for(Iterator<String> i = c.iterator();i.hasNext();)

if (i.next().length() == 4)
i.remove();

}

• The compiler now knows the type of element in the
Collection, so it knows that i.next() returns a String.

Defining Generics
public interface List<E> {

void add(E x);
Iterator<E> iterator();

}
public interface Iterator<E> {

E next();
boolean hasNext();

}

• Here E is the the formal type parameter (or just
parameter) for the interfaces List and Iterator

• When you define a generic class or interface in this
way, you can then use the parameter just as you
would a normal type in your definitions.

Generics and Subtypes
• Subtyping with generics is harder than you think:

List<String> ls = new ArrayList<String>();
List<Object> lo = ls; // This is illegal

• Because String is a subtype of Object, you may be tempted
to think List<String> is a subtype of List<Object>. This
is wrong!

• From the tutorial:
“In general, if Foo is a subtype (subclass or subinterface) of Bar, and
G is some generic type declaration, it is not the case that G<Foo> is a
subtype of G<Bar>. This is probably the hardest thing you need to
learn about generics, because it goes against our deeply held
intuitions.”

Wildcards
• Sometimes the parameter will be too restrictive:

void printCollection(Collection<Object> c){
for (Object e : c) {

System.out.println(e);
}}

• The problem is the Collection<Object> isn’t a
supertype of every Collection<E>. The above
method only works on a collection of Objects.

• We can fix this using Wildcards:
void printCollection(Collection<?> c) {

for (Object e : c) {
System.out.println(e);

}}

Using Wildcards
• Think of the <?> as denoting any possible type. G<?>

is a supertype of every G<T>.

• Since we don’t actually know the parameter when
using wildcards, typically we have to use Object in
the method definition.

• Sometimes you want to be slightly more restrictive:
G<? extends Foo>// restricts to G<T> where T must

//extend FOO
G<? super Bar>// restricts to G<T> where Bar must

//extend T

Generic Methods
• This won’t work:
static void fromArrayToCollection(Object[] a, Collection<?> c)

{ for (Object o : a) {
c.add(o); // compile time error

}}

• The problem is that we don’t know what kind of
Collection c is, so we can add and o of type Object.

• The solution: use parameters in method declaration:
static <T> void fromArrayToCollection(T[] a, Collection<T> c)

{ for (T o : a) {
c.add(o); // correct

}}

• The method now can refer to a parameter T
anywhere in the definition.

