CS211 Lecture, Lecture 24
Graph Searching

Guest Lecture – Robin Lim

Overview:

· Problem Statement
· Depth-First Search

· Breadth-First Search
· Analysis
Problem Statement:

You are given an undirected graph G = (V,E), where the nodes contain integer data. We want to figure out:

1. Given some integer x, is x in our graph?

2. Given two nodes v1 and v2, can we find a path from v1 to v2 in the graph?
3. How do we add 1 to every node in the graph?

An application to N-puzzle (assignment 6)… Starting at an N-puzzle state, how can we find a path to the solved puzzle state? Sample N-puzzle graph:
Let’s concentrate on problem 1…
Proposing Some Algorithms

· Algorithm 1: Start at some node s, and traverse down a random outgoing edge until we find x (the value we’re searching for.
current = s
while(value in current != x && not all nodes visited) {

pick random edge (current, v) – random adjacent node
current = v
}

 if (all nodes visited) return false

 else return true

· Example

· Problems?

· May check same state multiple times (not efficient)

· Algorithm 2:

· Start at node s.
· Once we visit a node, we mark the node as visited.
· As we traverse nodes in the graph, we choose a random adjacent node that has not been visited.
· Example

· Problems?

· May not search all the nodes (not exhaustive)
Depth-First Search (DFS)
· Need some sort of memory…
· Reintroduce the stack (LIFO data structure)

· Let’s consider the following algorithm:

stack = new empty stack

current = s
initialize visited = false for all nodes in G
stack.push(s)

while(stack is not empty) {

current = stack.pop()

if (current has been visited)

continue;

if (value of current == x)

return true
stack.push(all nodes adjacent to current that have not been visited)

Mark current as visited

}
return false
· Example (see example at end of notes)
Breadth-First Search (BFS)

· Hmmm… Let’s throw away the stack in the above algorithm, now what?

· Reintroduce the queue (FIFO data structure)

· Now consider this algorithm…

queue = new empty queue

current = s
initialize visited = false for all nodes in G
queue.enqueue(s)

while(queue is not empty) {

current = queue.dequeue()

if (current has been visited)

continue;

if (value of current == x)

return true
queue.enqueue(all nodes adjacent to current that have not been visited)

Mark current as visited

}
return false
· Example (see example at end of notes)
Analysis

· Running time (informal, hand-wavy argument)

· Worst case: x is not found

· Each node is visited once. Each edge is traversed twice.

· Therefore, both algorithms O(|E| + |V|)

· What’s the difference?

· BFS searches level by level, while DFS searches by going as deep as it can possibly go
· Which one is better?

· Depends on the problem

· What are you searching for?

· Sometimes knowing something about the graph can help you choose which algorithm you wish to use

· Which one will probably return a shorter path solution? BFS

· Which one will probably use up less memory? DFS
Exercises and Things to Think About
Aside from doing assignment 6, here are some helper problems that may help you understand BFS and DFS a little better…
· Referring back to the “Problem Statement” of this set of notes, how would you solve problems 2 and 3 using DFS and BFS?
· You could actually throw away the stack for DFS and instead use recursion to implement the algorithm. Write the pseudocode for this recursive implementation.
· Say BFS starts at a start node s and is searching for a path from s to node y. Does BFS always return the shortest path from s to y? Justify your answer. If we put weights on the edges, does BFS always return the shortest path from s to y?

· How would you implement both DFS and BFS if the graph was a directed graph? Alter the algorithms above such that they work for directed graphs.

[image: image1]
Example
[image: image2]
current

Example for BFS

5

Queue front

Iteration 5

FOUND!

6

5

4

3

current

5

4

Queue front

Iteration 4

Node 3 already visited

6

5

4

3

2

1

5

current

4

3

Queue front

Iteration 3

6

5

4

3

2

1

4

current

3

3

Queue front

Iteration 2

6

5

4

3

2

1

current

3

2

Queue front

Iteration 1

6

5

4

3

2

1

current

1

Queue front

s = Node 1, x = Node 4

Iteration 0

6

5

4

3

2

1

stack bottom

2

Iteration 5

FOUND!

6

5

4

3

2

1

current

4

stack bottom

2

Iteration 4

6

5

4

3

2

1

current

2

stack bottom

2

Iteration 3

6

5

4

3

2

1

5

current

2

stack bottom

2

Iteration 2

6

5

4

3

2

1

3

stack bottom

2

stack bottom

1

Iteration 1

current

6

5

4

3

2

1

s = Node 1, x = Node 4

Iteration 0

6

5

4

3

2

1

2

1

Example for DFS

