
1

1

Recursion

We teach recursion as the first topic, instead of
new object-oriented ideas, so that those who
are new to Java can have a chance to catch up
on the object-oriented ideas from CS100.

Recursive definition: A definition that is
defined in terms of itself.

Recursive method: a method that calls itself
(directly or indirectly).

Recursion is often a good alternative to itera-
tion (loops). Its an important programming
tool. Functional languages have no loops --
only recursion.

Readings:
Weiss, Chapter 7, page 231-249.
CS211 power point slides for recursion

Homework: See handout.

2

Recursion

Recursive definition: A definition that is
defined in terms of itself.

A noun phrase is either
• a noun, or
• an adjective followed by a noun phrase

<noun phrase> ::= <noun>
| <adjective> <noun phrase>

 <noun phrase>

<adjective> <noun phrase>

 <adjective> <noun phrase>

 <noun>

 big black dog

2

3

Recursive definitions in mathematics

Factorial:
!0 = 1 base case
!n = n * !(n-1) for n > 0 recursive case

Thus, !3 = 3 * !2
 = 3 * 2 * !1
 = 3 * 2 * 1 * !0
 = 3 * 2 * 1 * 1 (= 6)

Fibonacci sequence:

Fib0 = 0 base case
Fib1 = 1 base case
Fibn = Fibn-1 + Fibn-2 for n > 1 recursive case

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

4

Turn recursive definition into recursive function

Factorial:
!0 = 1 base case
!n = n * !(n-1) for n > 0 recursive case

Thus, !3 = 3 * !2
 = 3 * 2 * !1
 = 3 * 2 * 1 * !0
 = 3 * 2 * 1 * 1 (= 6)

// = !n (for n>=0)
public static int fact(int n) {
 if (n == 0) {

return 1; base case
 }
 // {n > 0} an assertion
 return n * fact(n-1); recursive case
} (a recursive call)

Later, we explain why this works.

note the precise specification

3

5

Turn recursive definition into recursive function

Fibonacci sequence:

Fib0 = 0 base case
Fib1 = 1 base case
Fibn = Fibn-1 + Fibn-2 for n > 1 recursive case

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

// = Fibonacci number n (for n >= 0)
public static int Fib(int n) {
 if (n <= 1) { can handle both

return n; base cases together
 }
 // {n > 0} an assertion
 return Fib(n-1) + Fib(n-2); recursive case
} (two recursive calls)

Later, we explain why this works.

note the precise specification

6

Two issues in
coming to grips with recursion

1. How are recursive calls executed?

2. How do we understand a recursive
method and how do we write-create a
recursive method?

We will handle both issues carefully. But for
proper use of recursion they must be kept
separate.

We DON’T try to understand a recursive
method by executing its recursive calls!

4

7

Understanding a recursive method

MEMORIZE THE FOLLOWING

Step 0: HAVE A PRECISE SPECIFICATION.

Step 1: Check correctness of the base case.

Step 2: Check that recursive-call arguments are
in some way smaller than the parameters, so that
recursive calls make progress toward termination
(the base case).

Step 3: Check correctness of the recursive case.
When analyzing recursive calls, use the
specification of the method to understand them.

Weiss doesn’t have step 0 and adds point 4,
which has nothing to do with “understanding”

4: Don’t duplicate work by solving some instance
in two places.

8

Understanding a recursive method

Factorial:
!0 = 1 base case
!n = n * !(n-1) for n > 0 recursive case

Step 1: HAVE A PRECISE SPECIFICATION

// = !n (for n>=0)
public static int fact(int n) {
 if (n == 0) {

return 1; base case
 }
 // {n > 0}
 return n * fact(n-1); recursive case
} (a recursive call)

Step 2: Check the base case.

Here’s when n = 0, 1 is returned, which is 0!. So
the base case is handled correctly.

5

9

Understanding a recursive method
Factorial:
!0 = 1 base case
!n = n * !(n-1) for n > 0 recursive case

Step 3: Recursive calls make progress toward
termination.

// = !n (for n>=0)
public static int fact(int n) {
 if (n == 0) {

return 1;
 }
 // {n > 0}
 return n * fact(n-1); recursive case
}

argument n-1 is smaller than
parameter n, so there is progress
toward reaching base case 0

parameter n

argument n-1

10

Understanding a recursive method

Factorial:
!0 = 1 base case
!n = n * !(n-1) for n > 0 recursive case

Step 4: Check correctness of recursive case; use
the method specification to understand recursive
calls.

// = !n (for n>=0)
public static int fact(int n) {
 if (n == 0) {

{ return 1; }
 return n * fact(n-1); recursive case
}

In the recursive case, the value returned is

 n * fact(n -1).

Using the specification for method fact, we see
this is equivalent to

n * !(n -1).

That’s the definition of !n, so the recursive
case is correct.

6

11

Creating recursive methods

Use the same steps that were involved in understanding
a recursive method.

•Be sure you SPECIFY THE METHOD PRECISELY.

•Handle the base case first

•In dealing with the non-base cases, think about how
you can express the task in terms of a similar but
smaller task.

12

Creating a recursive method

Task: Write a method that removes blanks
from a String.

0. Specification:

// = s but with its blanks removed
public static String deblank(String s)

1. Base case: the smallest String is “”.

 if (s.length == 0)
return s;

2. Other cases: String s has at least 1 character.
If it’s blank, return s[1..] but with its blanks
removed. If it’s not blank, return

 s[0] + (s[1..] but with its blanks removed)

Notation: s[i] is shorthand for s.charAt[i].
s[i..] is shorthand for s.substring(i).

precise specification!

7

13

Creating a recursive method

// = s but with its blanks removed
public static String deblank(String s) {
 if (s.length == 0)

return s;
 // {s is not empty}
 if (s[0] is a blank)

return s[1..] with its blanks removed
 // {s is not empty and s[0] is not a blank}
 return s[0] + (s[1..] with its blanks removed);
}

The tasks given by the two English, blue
expressions are similar to the task fulfilled by
this function, but on a smaller String! !!!Rewrite
each as

 deblank(s[1..]) .

Notation: s[i] is shorthand for s.charAt[i].
s[i..] is shorthand for s.substring(i).

14

Creating a recursive method

// = s but with its blanks removed
public static String deblank(String s) {
 if (s.length == 0)

return s;
 // {s is not empty}
 if (s.charAt(0) is a blank)

return deblank(s.substring(1));
 // {s is not empty and s[0] is not a blank}
 return s.charAt(0) +
 deblank(s.substring(1));
}

Check the four points:
0. Precise specification?
1. Base case: correct?
2. Recursive case: progress toward termination?
3. Recursive case: correct?

8

15

Creating a recursive method

Task: Write a method that tests whether a
String is a palindrome (reads the same
backwards and forward).

E.g. palindromes: noon, eve, ee, o, “”
 nonpalindromes: adam, no

0. Specification:

// = “s is a palindrome”
public static boolean isPal(String s)

1. Base case: the smallest String is “”. A string
consisting of 0 or 1 letters is a palindrome.

 if (s.length() <= 1)
return true;

 // { s has at least two characters }

precise specification!

16

Creating a recursive method

// = “s is a palindrome”
public static boolean isPal(String s) {
 if (s.length() <= 1)

return true;
 // { s has at least two characters }

We treat the case that s has at least two letters.
How can we find a smaller but similar problem
(within s)?

s is a palindrome if

(0) its first and last characters are equal, and
(1) chars between first & last form a palindrome:

e.g. AMANAPLANACANALPANAMA

the task to decide whether the characters between
the last and first form a palindrome is a smaller,
similar problem!!

have to be the same

has to be a palindrome

9

17

Creating a recursive method

// = “s is a palindrome”
public static boolean isPal(String s) {
 if (s.length() <= 1)

return true;
 // { s has at least two characters }

We treat the case that s has at least two letters.
How can we find a smaller but similar problem
(within s)?

s is a palindrome if

(0) its first and last characters are equal, and
(1) chars between first & last form a palindrome:

e.g. AMANAPLANACANALPANAMA

the task to decide whether the characters between
the last and first form a palindrome is a smaller,
similar problem!!

have to be the same

has to be a palindrome

18

Binary search

Consider int array b[0..n-1] and integer x. Assume that

virtual element b[-1] contains -
virtual element b[n] contains

 -1 0 1 2 3 4 5 6 7
 b = - 3 5 7 7 7 9 9 n = 7

Find an index i such that

b[i] <= x <= b[i+1]

If x = 7, finds position of rightmost 7.
If x = 2, return 0.
If x = -5, return 0
If x = 15, return 9

// = index i such b[i] <= x <= b[i+1]
// precondition b[h] <= x <= b[k] and
// -1 <= h < k <= b.length
public static int bsearch(int[] b, int h, int k)

Search whole array using:

bsearch(b, 0, b.length)

10

19

Binary search

Consider int array b[0..n-1] and integer x. Assume that

virtual element b[-1] contains -
virtual element b[n] contains

 -1 0 1 2 3 4 5 6 7
 b = - 3 5 7 7 7 9 9 n = 7

// = index i such b[i] <= x <= b[i+1]
// precondition b[h] <= x <= b[k] and
// -1 <= h < k <= b.length
public static int bsearch(int[] b, int h, int k) {
 int e= (h+k) % 2;
 // {-1 <= h < e < k <= b.length}
 if (b[e] <= x)

{ i= e; }
 else {j= e;}
}

20

Tiling Elaine’s Kitchen

2**n by 2**n kitchen, for some n>= 0.
A 1 by 1 refrigerator sits on one of the squares of the
kitchen. Tile the kitchen with L-shaped tiles:, each a 2 by 2
tile with one corner removed:

Base case: n=0, so it’s a 2**0 by 2**0 kitchen.
Nothing to do!

Recursive case: n>0. How can you find the same kind of
problem, but smaller, in the big one?

