Recursion

We teach recursion as the first topic, instead of
new object-oriented ideas, so that those who
are new to Java can have achanceto catch up
on the object-oriented ideas from CS100.

Recursive definition: A definition that is
defined in terms of itself.

Recursive method: amethod that callsitself
(directly or indirectly).

Recursion is often a good aternative to itera-
tion (loops). Its an important programming
tool. Functional languages have no loops --
only recursion.

Readings:
Weiss, Chapter 7, page 231-249.
CS211 power point slides for recursion

Homework: See handout. 1

Recursion

Recursive definition: A definition that is
defined in terms of itself.

A noun phraseis either
e anoun, or

« an adjective followed by a noun phrase

<noun phrase> ::= <noun>
| <adjective> <noun phrase>

<noun phrase>
<adjective> <noun phrase>
<adjective> <noun phrase>
|

<noun>

big black dog

Recursive definitionsin mathematics

Factorial:
10=1 base case
In=n*1(n1) forn>0 recursive case

Thus, 13=3* 12
=3*2*11
=3*2*1%10
=3*2*1%1 (=6)

Fibonacci sequence:

Fiby =0 base case
Fib, =1 base case
Fib, = Fib,, + Fib,, forn>1 recursivecase

0,1,1,2,3,5,8,13,21, 34, 55, ...

Turn recursive definition into recursive function

Factorial:
10=1 base case
In=n*1(n1) forn>0 recursive case

Thus, I3=3* 12
=3*2*11
=3*2*1*10
=3*2*1*1 (=6)
note the precise specification

/I =1n (for n>=0)
public static int fact(int n) {

if (n==0){
return 1; base case
Il {n >0} an assertion
return n* fact(n-1); recursive case
} (arecursive call)

Later, we explain why this works. ¢

Turn recursive definition into recursive function
Fibonacci sequence:

Fiby =0 base case

Fib, =1 base case

Fib, = Fib,, + Fib,, forn>1 recursivecase
0,1,1,2,3,5,8,13,21, 34, 55, ...

note the precise specification

/I = Fibonacci number n (for n >= 0)
public static int Fib(int n) {

if (n<=1){ can handle both
return n; base casestogether
}
Il {n >0} an assertion
return Fib(n-1) + Fib(n-2); recursive case
} (two recursive calls)

Later, we explain why this works. °

Two issuesin
coming to gripswith recursion

1. How arerecursive calls executed?

2. How do we understand arecursive
method and how do we write-create a
recursive method?

We will handle both issues carefully. But for
proper use of recursion they must be kept
separate.

We DON'T try to understand arecursive
method by executing its recursive calls!

Under standing a recur sive method
MEMORIZE THE FOLLOWING
Step 0: HAVE A PRECISE SPECIFICATION.
Step 1: Check correctness of the base case.

Step 2: Check that recursive-call arguments are
in some way smaller than the parameters, so that
recursive calls make progress toward termination
(the base case).

Step 3: Check correctness of the recursive case.
When analyzing recursive calls, use the
specification of the method to understand them.

Weiss doesn’t have step 0 and adds point 4,
which has nothing to do with “ understanding”

4: Don't duplicate work by solving some instance

in two places.
7

Under standing a recur sive method

Factorial:
10=1 base case
In=n*!(n-1) forn>0 recursivecase

Step 1: HAVE A PRECISE SPECIFICATION

/I=1n (for n>=0)
public static int fact(int n) {

if (n==0){
return 1; base case
}
I1{n>0}
return n* fact(n-1); recursive case
} (arecursivecall)

Step 2: Check the base case.

Here'swhenn =0, 1isreturned, which is0!. So
the base case is handled correctly.

Under standing a recur sive method
Factorial:
10=1 base case
In=n*!(n-1) forn>0 recursivecase

Step 3: Recursive calls make progress toward
termination.

argument n-1issmaller than
parameter n, so thereisprogress
toward reaching base case 0

/l=1n (for n>=0)
public static int fact(int n) {

if (n==0){ N

return 1; parameter n

} argument n-1

I1{n>0}
return n* fact(n-1); recursive case

}

Under standing a recur sive method

Factorial:
10=1 base case
In=n*!(n-1) forn>0 recursivecase

Step 4: Check correctness of recursive case; use
the method specification to understand recursive

calls.

In therecursive case, thevaluereturned is

n* fact(n -1).
Using the specification for method fact, we see
thisis equivalent to

n*!(n-1).
That’sthe definition of !n, so therecur sive
caseiscorr ect.

/I =1n (for n>=0)
public static int fact(int n) {
if (n==0){
{ returni; }
return n* fact(n-1); recursive case

} 10

Creating recursive methods

Use the same steps that were involved in under standing
arecur sive method.

*Be sureyou SPECIFY THE METHOD PRECISELY.
*Handle the base casefirst
In dealing with the non-base cases, think about how

you can express thetask intermsof a similar but
smaller task.

11

Creating arecursive method

Task: Writeamethod that removes blanks
from a String.

0. Specification: ‘ precise specification! ‘

/I = sbut with its blaﬁs removed
public static String deblank(String s)

wn

1. Base case: the smallest Stringis“”.

if (slength ==0)
return s

2. Other cases: String s has at least 1 character.
If it'sblank, return s[1..] but with its blanks
removed. If it's not blank, return

5[0] + (q1..] but with its blanks removed)

Notation: gi] is shorthand for s.charAt[i].
gli..] is shorthand for s.substring(i).

12

Creating arecursive method

/I = sbut with its blanks removed
public static String deblank(String s) {
if (slength ==0)
return s
/I {sisnot empty}
if (0] isablank)
return g[1..] with its blanks removed
/I {sisnot empty and §0] is not a blank}
return g[0] + (§[1..] with its blanks removed);

}

The tasks given by the two English, blue
expressions are similar to the task fulfilled by
this function, but on asmaller String! !!!Rewrite
each as

deblank([1..]) .

Notation: gi] is shorthand for s.charAt[i].
gli..] is shorthand for s.substring(i).

13

Creating arecursive method

/I = sbut with its blanks removed
public static String deblank(String s) {
if (slength ==0)
return s
/I {sisnot empty}
if (s.charAt(0) isablank)
return deblank(s.substring(1));
/I {sisnot empty and §0] is not a blank}
return s.charAt(0) +
deblank(s.substring(1));
}

Check thefour points:

0. Precise specification?

1. Base case: correct?

2. Recursive case: progress toward termination?
3. Recursive case: correct?

14

Creating arecursive method

Task: Writeamethod that testswhether a
String is a palindrome (readsthe same
backwards and forward).

E.g. palindromes: noon, eve, ee, o, “”
nonpalindr omes: adam, no

0. Specification: ‘ precise specification!

/I ="“sis apaindrome”
public static boolean isPal (String)

1. Base case: the smallest Stringis“”. A string
consisting of 0 or 1 lettersis a palindrome.
if (slength() <=1)

return true;
/I { s hasat least two characters}

15

Creating arecursive method

/[=*“sis apaindrome”
public static boolean isPal (String s) {
if (slength() <=1)
return true;
/I { s hasat least two characters }

We treat the case that s has at |east two letters.
How can wefind a smaller but similar problem
(within s)?

sisapaindromeif

(0) itsfirst and last characters are equal, and
(2) chars between first & last form a palindrome:
have to be the same

eg. AMANAPLANACANAL PANAMA
has to be a palindrome

the task to decide whether the characters between
the last and first form apalindrome is a smaller,

similar problem!!
16

Creating arecursive method

/[=*“sis apaindrome”
public static boolean isPal (String s) {
if (slength() <=1)
return true;
/I { s hasat least two characters }

We treat the case that s has at |east two letters.
How can we find a smaller but similar problem
(withins)?

sisapaindromeif

(0) itsfirst and last characters are equal, and
(2) chars between first & last form a palindrome:
have to be the same

eg. AMANAPLANACANAL PANAMA
has to be a palindrome

the task to decide whether the characters between
the last and first form a palindrome is a smaller,

similar problem!!
17

Binary search
Consider int array b[0..n-1] and integer x. Assume that

virtual element b[-1] contains -
virtual element b[n] contains

-1 0

1 7
b=- 3 5

23456
77799 n=7
Find an index i such that

b[i] <= x <=h[i+1]
If x = 7, finds position of rightmost 7.
I1f x =2, return 0.

If x = -5, return 0
If x = 15, return 9

/I =index i such b[i] <= x <= b[i+1]

/I precondition b[h] <= x <= b[k] and

1 -1<=h<k<=h.length
public static int bsearch(int[] b, int h, int k)
Search whole array using:

bsearch(b, 0, b.length)

18

Binary search
Consider int array b[0..n-1] and integer x. Assume that

virtual element b[-1] contains -
virtual element b[n] contains

-1 0

1 7
b=- 3 5

23456
77799 n=7
/I =index i such b[i] <= x <= b[i+1]
/I precondition b[h] <= x <= b[k] and
I -1<=h<k<=h.length
public static int bsearch(int[] b, int h, int k) {

int e= (h+k) % 2;

/I {-1<=h<e<k <= b.length}

if (b[e] <=x)

{i=e}
dse {j=¢}

19

Tiling Elaine’' sKitchen

2**n by 2**n kitchen, for some n>= 0.

A 1 by 1 refrigerator sits on one of the sguares of the
kitchen. Tile the kitchen with L-shaped tiles:, each a2 by 2
tile with one corner removed:

Base case: n=0, so it'sa2**0 by 2**0 kitchen.
Nothing to do!

Recursive case: n>0. How can you find the same kind of
problem, but smaller, in the big one?

20

10

