Review of classes and subclasses

M fast through this material, since by now all
have seen it in CS100 or the Java bootcamp

First packages
Then classes
Then subclasses

Goal: to give you complete understanding
about how objects, methods, method calls are
implement.

Raise discussion of classes and subclasses
above the level of the computer and talk
instead about classes as drawersin afiling
cabinet, objects as manila foldersthat goin
file drawers, and references or pointersas
labels or names placed on manila folders.

This makes concepts easier to grasp, to talk
about; loses nothing.

Packages

Read Weiss, section 3.6, “ packages’, for
reference

Package: collection of .java sourcefiles (and
other packages and i nterfaces) that are grouped
together in the same directory (folder).

Package java.lang contains classes that you
can automatically use:

ewrapper classes: Integer, Boolean, etc.

*Math: contains functions you can use, like abs
and sort

«String and StringBuffer

*System

*Throwable, Error, Exception (discuss later)

Package java.io contains classes for doing
input/ouput. We'll discuss this abitin
recitations.
To use these, you should “import” them.
Put the command

import javaio.*;

at the top of afilethat contains a class that will
use aclassin this package.

import java.io.*;
public class Ex {
publicvoid m(...) {

}

Other useful packages

Y ou have to import these packages. We'll use
many of these later in the course.

« java.applet: used for applets
 java.awt: used in constructing GUIs

¢ javax.swing: the more modern classes for
constructing GUIs

e javautil: classes for dates, calendars,
locales, random numbers. Class Vector.
Classes for sets, lists, maps

You can make your own packages
Default package, say classesC1, C2, C3
Package mine, say classes K1, K2
File structure:

main directory:
Cljava
C2java
C3.java
mypack (a directory)
Kljava
K2.java

fileK1l.java fileK2.java
package mypack; package mypack;

public classK1 { public classK2 {

} }
5
Visibility levels
publicint w;
privateint x;

protected int y;
/* package*/ int z;

private: visible only in the class.

[* package */: visible only in the packagein
which it appears.

protected: visible in the package in which it
appears and in subclasses.

public: visible anywhere.

Note: Y ou cannot use the keyword package as
aprefix on adeclaration. That is why we
have placed comments around it. Visibility
“package” isthe default, when no access
modifier is given.

Note: You can place these modifiers on fields,
methods, and classes

Review of classes

Why review? To make sure that you and | are
using the same terminology and the same
concepts of class and related issues. Use this
example:

publicclassC{
public static final int ten= 10;
privateinty;

/I Constructor: instance withy = yp
public C(intyp) { y= yp;}

/1 specification of method p
public static void p(int x) {

// body of method goes here
}

/I specification of function f
publicint f(int y) {
// body of function f goes here
}
} 7

Notes on the class on previous slide

1. A classisadrawer of afile
cabinet. It contains (at least) the ClassC
static entiti es defined in the class.
In this case, ten and p.

2. A classisatemplate for objects —
of the class. Every object of Cis
amanilafolder of the form given
below. The manilafolder contains all nonstatic
entities declared in class C. The manilafolder
goesin C’sfiledrawer.

name of object name of class
a0

nonstatic field, <]

or instance

variable y |:|

nonstatic __——+f C

method, or
instance method constructor s

Draw objects as manilafolders
You MUST draw each object as shown below
Asamanilafolder with:
« classnamein box in upper right corner
« name of object on the tab of manilafolder
« each nonstatic field as avariable in the folder

« the name of each nonstatic method in the folder
a0

[e]
vl

Theframefor amethod call

All method calls occur within methods, which
are defined in classes. We now explain the use of
the “scope box” in the frame:

Scope box used during execution of method body
to find variables and methods that are referenced

scop:a box
method name ‘
return
parameters and local address

variables appear here

Scope box contains, for a:

¢ nonstatic method: the name of theinstancein
which the method appears

« static method: the name of the class in which it
isdefined

« constructor: name of newly created object

10

Execution of procedure call
1. Evaluate args and push them onto call stack.

2. Push locations for the rest of the frame for
the call onto the stack.

3. Put in frame: name of method, local vars,
return address, and scope box --filled in
correctly (see slide 10).

4. Execute method body --look in frame at top
of stack for variable or method. If not there, use
scope box to determine where to look next; if

in an object, search from bottom to top.

5. Pop frame from call stack; continue execut-
ing at the return addressin popped frame.

scop:a box
method name !
return
parameters and local address

variables appear here

11

Sample execution of proc call --do in class

/I An instance maintai ns the number of walks
/[and hits of abaseball player
publicclassC{
privateint y; // number of walks
privateint x=0; // number of hits

/I Constructor: instance with yp walks, 2 hits
public C (intyp) { y= yp; x=2;}
/I = number of hits
publicint hits() { returnx; }
/I = number of hits + number of errors
publicint hitErr() { return x;}

}

public class M {
public static void main (String[] pars) {
b=new C(5);
c=new C(4);
d=c.hits();
} } 12

Memorizefor quiz on Tuesday, 18 Sept.

I’ simportant for understanding how method
calls and objects work that you memorize:

(1) format of a frame
(2) format of an object --manilafolder

(3) evaluation of anew expression
new C(...)
(a) create a new instance of class C
(b) execute method call C(...), putting in
the scope box of the frame the name of
the newly created object

(4) Stepsin executing amethod call (slide 11).

13

Drawing an instance of a subclass

// Extends class C on slide 12
public class Sub extends C {
privateint z; // number of errors

/I Constructor: instance with yp walks, 2 hits,
/[and zp errors
public Sub(int yp, int zp)

{ super(yp); z=zp;}
/I = number of hits+ number of errors
publicint hitErr() { return hits() + z;}

} superclass
& o name
C
y[I x[] superclass
-1 It
C hits hitErr componerts
subclass
z |:| ST ame
Sub hitErr | subclass

components
14

Overriding a method

Consider: Sub b= new Sub(5,6);
b.hitErr();

Which method hitErr is called? Our rules for
execution of calls (slide 11) say the one below
the line --the one in subclass Sub. It overrides the
other. In class, we execute this call.

b|ab
§
y[5] x[2] ©

C hits hitErr

z[6 | [sub |

Sub hitErr

15

Casting
Consider: C c= new Sub(5,6);

Instance a5 automatically cast to C, since cis of
class-type C. Apparent type of a (using c) isC,
real typeis Sub.

Legal Illegal Usingc,

cy cz reference

C.X only names

c.hits() accessible

c.hitErr() in the class
of C

=
ab
[c] Butour
y X rules say

_) that
C hits hitErr c.hitErr()
b refersto
z[6 | L/this'!!

J—

Sub hitErr

16

Casting

Consider: C c= new Sub(5,6);
Sub s= (Sub) c;

Explicit cast of c to subclasss. Using s, one can
reference everything in object a5.

Legal Illegal Legal
cy c.z sz
c.X s.hits()
c.hits() s.hitErr()
c.hitErr()
o8] 5[]
ab
le]
y[5]
C hits hitErr
z[6 | E)
Sub hitErr .

