Inner classes

Reading for theselectures:
Wei'ss, Section 15.1 (Iterators and nested cl asses),
Section 15.2 (Iterators and inner classes).

A nested classisastatic classthat is defined inside
another class. A nested class getsits own file drawer.
A nested cl ass can reference only static (and not non-
static) variabl es of the classin which it is nested.

public class X { In method m,
public static final int Y=2; can reference,
privateint x; p.q.Y,
private static class SC{ but not x.

privateint p;

private staticint q;

7 ¢ A classthat is
public void m()

v not defined
{p=Y; o=pi} inside another
} can't be static

}

Reasons for using nested class. Get it out of the way
(e.g. aonce-used functor), perhaps make it private so
others can’t refer to it directly.

Inner classes

Aninner classisanon-static classthat i s defined inside
another class. We investigate such classes here.

Start by defining a class that allows arrays of any size,
like util.Vector (but simpler, to show the idea).

/I An array that changesto fit the required size
public class DynamicArray {

/I Constructor: an array with 10 elements allocated
public DynamicArray() {...}

/I = the number of elementsin use
publicint length() {..}

/I = the element at index i (given 0 <=1 < length())
public Object get(int i) {...}

/] set the element at positioni tov (0 <=1i)
public void set(int i, Object v) {...}

Class DynamicArray

/I An array that changesto fit the required size
public class Dynami cArray{
/I b[0..n-1] are the elements. If n!=0, b[n-1] isthe
/I element with highest index into which avaue
/Il was stored.
private Object[] b;
privateint n;

/I Constructor: an array with 10 elements al located
public DynamicArray() {

b= new Object[10];

n=0;

}

/I = the number of elementsin use
public int length() {
returnn;

}

/I = the element at index i.
/I Precondition: 0 <= < length()
public Object get(int i) {

return bfi];

}

Class DynamicArray (continued)

/I set the element at positioni tov (0 <=1i)
public void set(int i, Object v) {
if (i >=b.length) {
/I Create anew array newb with at least i+1
/I elements. For efficiency, at least double the
I/l array size
Object[] newb=
new Object[Math.max(i+1, 2*b.length)];
/I Copy b[0..length()] into newb
for (int j=0; j !=length(); j++)
{ newb(j]=b[j]; }
b= newb;

}

/I {i < b.length, so v can be stored in b[i]}
bli]=v;
n= Math.max(n, i+1);

An iterator over a DynamicArray
import java.util.*;

public class DAlterator implements Iterator {

private DynamicArray b; // The array to process

privateint k=0; // Next element to process.
/1 0 <=k <= h.length()

/I Constructor: an iterator over b
public DAlterator(DynamicArray b) { thisb=b; }

/I = “thereis another item to process’
public boolean hasNext() { return k < b.length(); }

/I = the next item to process. Call only once per item

/I Throw an exception if no more items exist
public Object next() {
if (k ==b.length())
throw new Illegal StateException(” ... ");
k= k+1;
retur n b.get(k-1);
}

/I Not supported; does nothing
public void remove() {}

Problem with this iterator
over DynamicArray

« Class DynamicArray and itsiterator are separate, in

two distinct files. Perhaps double what we need, and this

makes a difference when there are hundreds of classes
to maintain.

* Usersdon’t have to be able to see the iterator, they just

have obtain a new instance when it is needed.

Making the iterator an inner classis a better solution.
Aninner classisanon-static class that is defined inside
another class.

DynamicArray with an inner class

import java.util.*;

public class Dynami cArray{
private Object[] b; privateint n;
public DynamicArray() { ... }
publicint length() { ... }
public Object get(int i) { ... }
public void set(int i, Objectv) { ... }

/I = an iterator over this DynamicArray
public Iterator iterator() { return new DAIlterator();}

private class DAlterator implements Iterator {
private int k= 0;

public boolean hasNext() { return k <n; }

public Object next() {
if (k==n) throw new ..(" ..");
k=k+1; return b[k-1];

}

) public void remove() {} inner class

}

DynamicArray with an inner class

Important points about the previous slide.

« 1. Class DAlterator is a private component of class
Dynami cArray --private so that outsiders can’t seeiit.
« 2. Class DAlterator isin each instance of
DynamicArray.
« 3. Aninstance of DAlterator has access to the fields of
theinstance of DynamicArray in which it was created --
see next slide. Because of this

« Array b can be referenced directly

« Variable n can be referenced directly
« 4. Field b of previous DAlterator is not needed.
« 5. Public method iterator to create an instance of
DA lterator.

« 6. Inner classes cannot have static components.

Thememory model and nested classes
(remember, anested classis static)

Aninstance of anested cl ass has a scope box, which
contains the name of classin which the nested classis
defined. Reason: So methodsin Y can access static
variables of X.

Suppose a0.m() iscalled (see below). Instance al is
created, and its scope box isfilled with name X.

public class X {
public staticclass Y {

}
public Y m() {return new Y();}

]
X Y]
n X X]

Thememory model and inner classes
(remember, an inner classis non-static)
Aninstance of an inner class X (say) has a scope box. It
containsthe name Y (say) of the instance in which the

inner cl ass appears. Reason: So methods of X can
reference fiel ds of theinstance of Y. Suppose

a0.iterator()
iscaled, whereiterator is
public Iterator iterator()
{ return new DAlterator(); }

Instance al is created, and its scope box is filled with
name a0 of the instance in which theiterator occurs.

B o

Dynami cArr DA terator

b[] [Dynamicarra | k[

n[| DynamicArray a0
length get set hasNext next
iterator ~ DAlterator remove DAlterator

10

Memory model:
referencing a non-static name

When looking for a non-static name:

Look first in the frame.

If not there, look (in bottom-up fashion) in the object x
(say) given by the scope box of the frame.

If not there, look (in bottom-up fashion) in the object y
(say) given by x’s scope box.

If not there, look (in bottom-up fashion) in the object

given by y’s scope box.

etc.
framefor a next ‘ \i

cal onnext| nopars return address

or local vars

@ | [sopebo]

bl:| Dynami cArray kl:l DA terator
n[__ | DynamicArray @

length get set
iterator ~ DAlterator remove DAlterator

hasNext next

11

Memory model: referencing a static name

When looking for a static namein a framefor a call
on a static method --the frame’s scope box isthe
name of a class C: Use the a gorithm in the box below.

Tofind a static name given a class C:

Look in class C'sfile drawer.

If not there, look in drawer for C's superclass C1 (say).
If not there, look in drawer for C1's superclass C2 (say).
... (continue in thisfashion) ...

m c
parsand return address

local vars

frame for acall on static method m

12

Memory model: referencing a static name

When looking for a static namein a framefor a call
on a non-static method --the frame's scope box isthe
name of an object al (say).

Aninner class cannot contain static decl arations. Only
inner-class objects have scope boxes. So execute this:

Object t= al;
while (object t has a scope box)
t= the name in t's scope box;

Now use the algorithm in the previous slide for
finding a static name, using the class of object t

framefor a | next ‘ al
call on next
no pars return address
or local vars

@ | [sopebo]

Dynami cArr DA terator

b | [Dynamicarray| k[

n[__ | DynamicArray a0
length get set hasNext next
iterator ~ DAlterator remove DAlterator

13

An example: responding to a button press
in a closeable window

Reading: Weiss, sect. B.3.4. Event handling: adaptors ...

Devel op aprogram that brings a JrrameETE
up this window on the monitor. second
Only one button is enabl ed. When %
theenabled button ispressed, itbe- —
comes disabled and the other be- == Jframe S&HE

comes enabled. first

Use thisto show a use of inner
classes and anonymous classes.

%

A window on the monitor corresponds to an instance of
class JFrame. Get a window using

JFrame jf= new JFrame(“title of frame”);

jf.pack(); // Call after all components have been
/I added to window.

jf.show(); // Make window visible on monitor

Window jf has no button or other components. Clicking
its close box hides the window but doesn’t terminate the
program.

14

An example: making window closeable

To have the program do something T =]
when close button is pressed, need second
toregister a“window listener”, by 7

(2) implementing class WindowL istener

(2) providing the seven methods of that class, each of
which deals with one of the boxesiin the title bar of the
window or with the window as awhole.

(3) Executing the following statement of method JFrame,
addWindowL istener (this);

which registers the instance in whi ch it appears as being
awindow listener, and

(4) putting the followi ng statement in the method that
“listens” to a press of the close box:

System.exit(0);

Seethe next dlide.

15

An example: making window closeable

import javax.swing.*; ﬂ

import java.awt.event.*; 7]

public class CloseableFrame extends JFrame
implements WindowL istener {
/I Constructor: a Frame with good closebox, title t
public Closeabl eFrame(String t) {
super (t);
addwWindowL istener(this);
}

/I Terminate program. Called when closebox pressed
public void windowCl osing(WindowEvent €)
{ System.exit(0); }

/I Each of the following methods deals with one
/I of the window boxes or with some action on the
/I window. They don’t do anything
public void windowCl osed(WindowEvent €) {}
public void windowDei conified(WindowEvent €) {}
public void windowl conified(WindowEvent €) {}
public void windowActivated(WindowEvent €) {}
public void windowDeactivated(WindowEvent €) {}
public void windowOpened(WindowEvent €) {}

} 16

An example: making window closeable

Thelast dide was messy. To help
out, Java provi des an abstract class, |_second_|
like CloseableFrame, that contains Z
empty methods for al | seven methods.
Theclassiscaled WindowAdapter.

So we would like to do the following, but it'sillegal!!

import javax.swing.*;
import java.awt.event.*;

Can't extend
two classes

public class CIoseebIeFr;a%/
extends JFrameWindowAdapter {

/I Constructor: a Frame with good closebox
public Closeabl eFrame()
{ addWindowListener(this); }

/I Terminate program. Called when closebox pressed
public void windowCl osing(WindowEvent €)
{ System.exit(0); }

17

An example: making window closeable
Solution to problem on previous

Y
Provide an inner class, and let z

theinner class extend WindowAdapter.

import javax.swing.*; creation OI
import java.awt.event.*; Instance 0
inner class

public class CloseableFrame extends JFrame {

/I Constructor: a Frame with good closebox
public Closeabl eFrame()
{ addwWindowL istener(new ExitOnClose()); }

private class ExitOnClose extends WindowAdapter {
/I Terminate program when closebox pressed
public void windowClosing(WindowEvent €)
{ System.exit(0); }

18

An example: making window closeable

We can make the inner class

anonymaous: second

%

import javax.swing.*;
import java.awt.event.*;

public class CloseableFrame extends JFrame {

/I Constructor: a Frame with good closebox
public Closeabl eFrame() {
addwW indowL istener(new
WindowAdapter() {
/I Terminate program when closebox pressed
public void windowClosi ng(WindowEvent €)
{ System.exit(0); }

); anonymous
} class
}
19
An example: making window closeable
After all this, wetell you that
class JFrame provides asimpler m_nn "

solution. Simply call JFrame’s
method setDefaultCl oseOperation.

%

JFrame jf= new JFrame();

jf.setDefaultCloseOperati on(
JFrame.EXIT_ON_CLOSE);

jf.pack();

jf.show();

But constant EXIT_ON_CLOSE isin class JFrame only
since Java 2 version 1.3, not in version 1.2.

Also, you can't use this method when using the older
class Frame

So, what was said on previous slidesiis still useful.

20

10

Responding to a button press

Devel op a program that brings O = Jframe=01 5|
up this window on the monitor. second
Only one button is enabl ed. When 4,,/
the enabled buttonispressed, itbe- ————————————
comes disabled and the other becomes enabled.

Listening to a button requires implementing thisinterface
--we need method ActionPerformed. A button pressis
one kind of “ActionEvent”.

package java.awt.event;
import java.util.EventListener;

/** Implement this interface to have a class respond to
ActionEvents for a Component. */
public inter face ActionL istener extends EventListener {

/** Called when e happens in a Component with
which this ActionListener is registered.
Process a button press */

public void actionPerformed(ActionEvent €) {

boolean b= (be.isEnabled());
be.setEnabled(!b); bw.setEnabled(b);

}

An example: responding to a button press

Aninstance of class JFrame isa] JrrameEE B

window on your monitor. An second
instance of JButton is a Component

that can be placed in a JFrame.

Method main creates anew JFrame. | first

We have to show what a constructor 2

does and what acti onPerformed does.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Applic extends JFrame
implements ActionL istener{
private JButton bw= new JButton("first");
private JButton be= new JButton("second");

public static void main(String pars[])
{ ApplicjF=new Applic("JFrame"); }

/I Constructor: aframe: two buttons, titlet
public Applic(Stringt) { ...}

public void actionPerformed(ActionEvent €) { ...}

22

11

An example: responding to a button press

The congtructor first callsthecon- T
tructor of the superclass, giving it
thetitle for the window. It then adds
the two buttons to the window --

It enabl es one button and disables
the other. And it registersthisin-
stance as a“listener” for button presses. Then, it tells

the JFrame to place all components. And its makes

the window visible. Isn't that easy?

/I Constructor: an Applic with two buttons and title t
public Applic(String t) {
super (t);
getContentPane().add(bw, BorderLayout. WEST);
getContentPane().add(be, BorderL ayout.EAST);

bw.setEnabled(false);
be.setEnabled(true);

/I Set the actionlistener for the buttons
bw.addActionListener(this);
be.addActionLi stener(this);

pack();
setVisibl e(true);

An example: responding to a button press

We can hide things by using an anonymous class.
public class Applic extends JFrame {
private JButton bw= new JButton("first");
private JButton be= new JButton("second");

/I Constructor: an Applic with two buttons and title t
public Applic(String t) { super(t);
getContent Pane().add(bw, BorderL ayout. WEST);
getContent Pane().add(be, BorderLayout.EAST);

bw.setEnabled(false);
be.setEnabled(true);

/I Set the actionlistener for the buttons
bw.addActionListener(a);
be.addActionListener(a);

pack(); setVisible(true);

private ActionListener al= new ActionListener() {
/I Process a button press
public void actionPerformed(ActionEvent €) {
boolean b= (be.isEnabled());
be.setEnabled(!b); bw.setEnabled(b);
}
h

12

