Algorithmic analysis

Introduction. This handout tellsyou what you are responsible for concerning the analysis of dgorithms

You areresponsible for:

Weiss, chapter 5, as follows:

5.1 What is algorithmic analysis?
+5.2 Examples of running time

*5.3 NO, nat responsiblefor this No.

5.4 Definition of Big-oh and Big-theta. Y ou should
be ableto use these definitions.

5.5 Everything except harmonic numbers. This
includesthe repeated doubling and repeated having
stuff.

*5.6. No, not responsible for this section. NO.
Instead, you should know the following algorithms
as presented in the handout on correctness of
algorithms and be able to determine their order of
execution time: linear search, binary search,
partition, insertion sort, and selection sort

5.7 Chedking an agorithm analysis
5.8 Limitations of big-oh analysis

*The material presented inthis handout (you should
be ableto perform the analysis of the mergesort
execution time and know how to fix Quicksort).

Order of execution time of mergesort

I sort b[h..K]
public static void mergesort(int[] b, int h, int k) {
if (k+1-h<=1)
return;
int e= (h+k+1)/2;
mergesort(b, h, e-1);
mergesort(b, e, k);
merge(b, h, &, k);

We know that merge takes time proportional tothe
number of elementsin b[h. k], i.e.it isan O(k+1-h)
algorithm. Supposeit takes s* (k+1-h) steps. Based
on thisassumption, we figure out the order of
execution of mergesort.

Define T(n) to be the number of stepsit takesto
mergessort an array of size n.

We have:

20 T(1) =1 (assumel unit of timefor executing
the base case)
2L T()
<look at the function body>
2*T(1) + 2s
<use T(1)>
2*1+2s

Notethat2 =21 *1

22 T(4)
<look at the function body>
2*T(2) + 4s
<use T(2)>
2%(2+2s) + 4s
<arithmetic>
4+ 8s

Notethat 8 = 22*2

28; T(8)
<look at the function body>
2*T(4) + 8s
<use T(4)>
2*(4+8s) + 8
<arithmetic>
8+ 24s

Note that 16 = 23 *3

We see apattern here: T(2P) = 2P + 2P *p*s
or: T(n) =n+n*log(n)*s

And indeed, we can prove this formula using
INDUCTION. Proving a theorem by induction is
akin to understanding a recursive function. We prove
the theorem for abase case. Then, we prove it for
the recursive (inductive) case under the assumption
that it holds for smaller cases.

Theorem: T(2°) = 2P + 2P *p*s

Proof of base case: T(20) = T(1) = 1 (earlier
analysis)

Proof of recursive case Assumep>0. We prove the
theorem under the assumption that

T(2K) =2k + 2 *k*s

holds for O<=k<p:



T(2P)
<look at the function body>

2ZT(2P Y + 2Ps

=  <use assumption, with k=p-1>

2¢(2P1 + 2 1x(p-1)*s) + X s
<arithmetic>

2+ 22*(p-1)*s+2Ps
<arithmetic>

X+ 2P *p*s

Isn’t that simple?

From thetheorem, we see that mergesort takes time
O(n log n) to sort anarray of sizen.

Discovering the theorem. Take alook at how we
discovered the theorem. We calculated T(1), T(2),
T(4), T(8), etc. until we saw a pattern. Then, we just
formulated the theorem as that pattern.

A more general theorem

We have proved that mergesort takes time O(n log
n) to sort an array of size n, when nis apower of 2.
It is easy to show that it then takes O(n log n) time
for an array of any size.

But we can do more The analysis that we did holds
whenever therecursive method satisfies certain
assumptions, which we describe in this theorem:

Theorem: Supposea recursive method that
processes an array takes 1 step for anarray of size0
or 1 and, for an array of size n>1 does two things (in
any order):

* Performs O(n) steps, processing thearray.

* Recursively callsitself twice to process the first

half and the last half of the array, of the samesize.
Then the algorithm takes time O(n log n) to process
an array of sizen.

Let’slook at quicksort. In the best case, each call on
partition partitions the array into two equal halves --
at least, each contains no more than 1/2 of the array.
Quicksort then partitions these two halves. Further,
method partition takes time proportional to the size
of the array segment that itis partitioning. Therefore,
in the best case, quicksort takes time O(n log n) to
sort an array of sizen.

It has been shown that the expected or average case
timefor quicksortis aso O(n log n), but the analysis
is beyond the scope of CS211.

In the worst case, quicksort is O(n?).



Fixing Quicksort so tha it takes at most O(n) space
to sort an array of size n and so that it is more
efficient. Here' s the original quicksort:

I sort b[h..K]
public static void quicksort(int b, int h, int k) {
if (k+1-h<=1)
{ return; }
int j= patition(b,h.k);
/I {b[h.j-1] <=Db[j] <=b[j+1.Kk]}
quicksort(b,h,j-1);
quicksort(b,j+1,k);
}

It has problems.

1. The pivot value b[h] may be the smallest element
of the array, and if so, partition creates one segment,
b[h..j-1], that is empty and one segment, b[j+1..k]
that contains all but one element. If this hgppened at
each iteration, the depth of recursionwould be k-h,
s0 O(k-h), tha is, linear space and would take O(k-
h)?) time.

We can’t solve this problem completdy. But we can
help it a bit by making b[h] be the median of three of
the array values before doing the partition. Thisgive
more chance that partition will produce segments of
nearly equd size.

2. Quicksort is particularly inefficient on small
arrays, because of all the method calls. By
experiment, it has been determined that insertion sort
does better on arrays of about 10 or fewer elements.

So, we change the base case from an array of size 1
or lesstoan array of size 10 or less and useinsertion
sort to sort it.

3. We have not solved the problem that in some
cases the depth of recursion will be linear in thesize
of the array, so that the method will take time
proportional to the size of the array.

If we can make the depth of recursion at most
logarithmic in the size of the array, then space will
also be logarithmic. At each call, we have two
segments to sort: b[h..j-1] and b[j+1.k]. We solve
our problem by sorting only the smallest one
recursively and using iteration for the other. This
works because the smaller one issmaller than half
the array size, so that at each recursivecall, the array
sizeis & least halved, leading to logarithmic
recursion depth.

/1 Sort b[h..k]
public static void quicksort (int[] b, int h, int k) {
/l'inv: the segment to be sorted isin ascending order
1 if and only if b[h..k] isin ascending order
// bound function: size of segment bh. k]
while (true) {
if (k+1-h<=10){
insertionSort(b,h,k);
return;

}

medianOf3(b,h);
/1 {b[h] is between b(j+k/2)] and b[K]}

int j= partition(b,h,k);
Il {blh..j-1] <= b[j] <= b[j+1..k]}

if (-h<=k-j){
quicksort(b,h,j-1); // ort the smaller segment
/I {original segment is sorted if b[j+1. K] is}
h=j+1;
}

else{
quicksort(b,j+1,k); // sort the smaller segment
/I {original segment is sorted if bfh..j-1] is}
k=]-1;

}

}
}

/I Permute b[h], bk], and b[(h+k)/2 to sore their
/I median in b[h]
public static void medianOf3(int b, int h, int k)



