
1

Sorting

CS211

Fall 2000

2

Insertion Sort

■ Corresponds to how most
people sort cards

■ Invariant: everything to left
is already sorted

■ Works especially well when
input is nearly sorted

■ Runtime
● Worst-case

▲ O(n2)

▲ Consider reverse-
sorted input

● Best-case
▲ O(n)

▲ Consider sorted input

// Code for sorting a[] an array of int
for (int i = 1; i < a.length; i++) {

int temp = a[i];
int k = i;
for (; k > 0 && a[k–1] > temp; k – –)

a[k] = a[k–1];
a[k] = temp;

}

3

Merge Sort

■ Uses recursion (Divide &
Conquer)

■ Outline (text has detailed
code)

● Split array into two halves

● Recursively sort each half

● Merge the two halves

■ Merge = combine two sorted
arrays to make a single sorted
array

● Rule: Always choose the
smallest item

● Time: O(n)

■ Runtime recurrence
● Let T(n) be the time to

sort an array of size n
● T(n) = 2T(n/2) + O(n)

● T(1) = O(1)
● Can show by induction

that T(n) = O(n log n)

■ Alternately, can show T(n)
= O(n log n) by looking at
tree of recursive calls

4

Quick Sort
■ Also uses recursion (Divide &

Conquer)

■ Outline

● Partition the array

● Recursively sort each piece
of the partition

■ Partition = divide the array like
this

■ p is the pivot item

■ Best pivot choices

● middle item

● random item

● median of leftmost, rightmost,
and middle items

■ Runtime analysis (worst-case)

● Partition can work badly
producing this:

● Runtime recurrence
T(n) = T(n–1) + O(n)

● This can be solved by
induction to show T(n) =
O(n2)

■ Runtime analysis (expected-
case)

● More complex recurrence

● Can solve by induction to
show
expected T(n) = O(n log n)

■ Can improve constant factor by
avoiding QSort on small sets

< p p > p

p > p

5

Heap Sort

■ Not recursive

■ Outline

● Build heap

● Perform removeMax on
heap until empty

● Note that items are
removed from heap in
sorted order

■ Heap Sort is the only
O(n log n) sort that uses no
extra space

● Merge Sort uses extra
array during merge

● Quick Sort uses recursive
stack

■ Runtime analysis (worst-
case)

● O(n) time to build heap
(using bottom-up
approach)

● O(log n) time (worst-
case) for each removal

● Total time: O(n log n)

6

Sorting Algorithm Summary

■ The ones we have discussed

● Insertion Sort

● Merge Sort

● Quick Sort

● Heap Sort

■ Other sorting algorithms

● Selection Sort

● Shell Sort (in text)

● Bubble Sort

● Radix Sort

● Bin Sort

● Counting Sort

■ Why so many? Do Computer
Scientists have some kind of
sorting fetish or what?

● Stable sorts: Ins, Mer

● Worst-case O(n log n): Mer,
Hea

● Expected-case O(n log n):
Mer, Hea, Qui

● Best for nearly-sorted sets:
Ins

● No extra space needed: Ins,
Hea

● Fastest in practice: Qui

● Least data movement: Sel

2

7

Lower Bounds on Sorting: Goals

■ Goal: Determine the
minimum time required to
sort n items

■ Note: we want worst-case
not best-case time

● Best-case doesn’t tell us
much; for example, we
know Insertion Sort
takes O(n) time on
already-sorted input

● We want to determine
the worst-case time for
the best-possible
algorithm

■ But how can we prove
anything about the best
possible algorithm?

● We want to find
characteristics that are
common to all sorting
algorithms

● Let’s try looking at
comparisons

8

Comparison Trees

■ Any algorithm can be
“unrolled” to show the
comparisons that are
(potentially) performed

Example
for (int i = 0; i < x.length; i++)

if (x[i] < 0) x[i] = – x[i];

■ In general, you get a
comparison tree

■ If the algorithm fails to
terminate for some input
then the comparison tree is
infinite

■ The height of the
comparison tree represents
the worst-case number of
comparisons for that
algorithm

0 < length x[1] < 0

x[0] < 0

1 < length

2 < length

x[2] < 0

9

Lower Bounds on Sorting: Notation

■ Suppose we want to sort the items in the array B[]

■ Let’s name the items

● a1 is the item initially residing in B[1], a2 is the
item initially residing in B[2], etc.

● In general, ai is the item initially stored in B[i]

■ Rule: an item keeps its name forever, but it can
change its location

● Example: after swap(B,1,5), a1 is stored in B[5]
and a5 is stored in B[1]

10

The Answer to a Sorting Problem

■ An answer for a sorting problem tells where each of the ai
resides when the algorithm finishes

■ How many answers are possible?

■ The correct answer depends on the actual values
represented by each ai

■ Since we don’t know what the ai are going to be, it has to be
possible to produce each permutation of the ai

■ For a sorting algorithm to be valid it must be possible for that
algorithm to give any of n! potential answers

11

Comparison Tree for Sorting

■ Every sorting algorithm has
a corresponding
comparison tree

● Note that other stuff
happens during the
sorting algorithm, we
just aren’t showing it in
the tree

■ The comparison tree must
have n! (or more) leaves
because a valid sorting
algorithm must be able to
get any of n! possible
answers

■ Comparison tree for sorting
n items:

comparison
tree

abc... bacd... cabd...

n! leaves

12

Time vs. Height

■ The worst-case time for a
sorting method must be ≥
the height of its comparison
tree

● The height corresponds
to the worst-case
number of comparisons

● Each comparison takes
Θ(1) time

● The algorithm is doing
more than just
comparisons

■ What is the minimum possible
height for a binary tree with n!
leaves?

Height ≥ log(n!) = Θ(n log n)

■ This implies that any
comparison-based sorting
algorithm must have a worst-
case time of Ω(n log n)

● Note: this is a lower
bound; thus, the use of
big-Omega instead of
big-O

3

13

Using the Lower Bound on Sorting

Claim: I have a PQ
● Insert time: O(1)
● GetMax time: O(1)

■ True or false?

False (for general sets)
because if such a PQ
existed, it could be used to
sort in time O(n)

Claim: I have a PQ
● Insert time: O(loglog n)
● GetMax time: O(loglog

n)

■ True or false?

False (for general sets)
because it could be used to
sort in time O(n loglog n)

True for items with priorities in
range 1..n [van Emde Boas]
(Note: such a set can be
sorted in O(n) time)

14

Sorting in Linear Time

There are several sorting
methods that take linear
time

■ Counting Sort
● sorts integers from a

small range: [0..k]
where k = O(n)

■ Radix Sort
● the method used by the

old card-sorters
● sorting time O(dn)

where d is the number
of “digits”

■ How do these methods get
around the Ω(n log n) lower
bound?

● They don’t use
comparisons

■ What sorting method works
best?

● QuickSort is best
general-purpose sort

● Counting Sort or Radix
Sort can be best for
some kinds of data

