Sorting

CS211
Fall 2000

Insertion Sort

= Corresponds to how most
people sort cards
= Invariant: everything to left 1 Code for sorting a[] an array of int

is already sorted for (inti=1;i<a.length; i++) {

= Works especially well when inttemp = afi;
input is nearly sorted intk = ;
. for (; k > 0 && a[k-1] > temp; k ——)
= Runtime alk] = alk-1];
« Worst-case a[k] = temp;
2 0(n?) }

4 Consider reverse-
sorted input

« Best-case
1 O(n)
4 Consider sorted input

Merge Sort

= Uses recursion (Divide &
Conquer)
= Outline (text has detailed
code)
« Split array into two halves
« Recursively sort each half
« Merge the two halves

= Merge = combine two sorted
arrays to make a single sorted
array
« Rule: Always choose the
smallest item

« Time: O(n)

= Runtime recurrence

« Let T(n) be the time to
sort an array of size n

T(n) = 2T(n/2) + O(n)
T(1) =0(1)

Can show by induction
that T(n) = O(n log n)

= Alternately, can show T(n)
=0(n log n) by looking at
tree of recursive calls

Quick Sort

= Also uses recursion (Divide & = Runtime analysis (worst-case)
Conquer) « Partition can work badly
= Outline producing this:

« Partition the array

« Recursively sort each piece
of the partition

= Partition = divide the array like

[>p]

Runtime recurrence
T(n) = T(n-1) + O(n)

this « This can be solved by
induction to show T(n) =
= pisthe pivot item O(n?)
= Best pivot choices = Runtime analysis (expected-
« middle item case)
. random item « More complex recurrence

« Can solve by induction to
show
expected T(n) = O(n log n)
= Canimprove constant factor by
avoiding QSort on small sets

median of leftmost, rightmost,
and middle items

Heap Sort

= Not recursive
= Outline
Build heap
Perform removeMax on
heap until empty
Note that items are
removed from heap in
sorted order
= Heap Sort is the only
O(n log n) sort that uses no
extra space
« Merge Sort uses extra
array during merge
« Quick Sort uses recursive
stack

= Runtime analysis (worst-
case)

« O(n) time to build heap
(using bottom-up
approach)

« O(log n) time (worst-
case) for each removal

« Total time: O(n log n)

Sorting Algorithm Summary

= The ones we have discussed = Why so many? Do Computer
« Insertion Sort Scientists have some kind of
« Merge Sort sorting fetish or what?

« Stable sorts: Ins, Mer

« Quick Sort
+ Heap Sort « Worst-case O(n log n): Mer,
Hea
. N « Expected-case O(n log n):
= Other sorting algorithms M);pr Hea, Qui (nlog n)

Selection Sort

Best for nearly-sorted sets:

« Shell Sort (in text) Ins

« Bubble Sort « No extra space needed: Ins,
« Radix Sort Hea

« Bin Sort « Fastest in practice: Qui

Counting Sort Least data movement: Sel

Lower Bounds on Sorting: Goals

= Goal: Determine the = But how can we prove
minimum time required to anything about the best
sort n items possible algorithm?

= Note: we want worst-case
not best-case time . We want to find

« Best-case doesn't tell us characteristics that are

much; for example, we common to all sorting

know Insertion Sort algorithms

takes O(n) time on

already-sorted input . Let's try looking at

We want to determine comparisons

the worst-case time for

the best-possible

algorithm

Comparison Trees

= Any algorithm can be = In general, you get a
“unrolled” to show the comparison tree

comparisons that are = [f the algorithm fails to
(potentially) performed ! .
£) terminate for some input
xampe .) then the comparison tree is
for (inti = 0; i < x.length; i++) infinite

if (x[i] < 0) x[i] = - x[i]; » The height of the

comparison tree represents
@ the worst-case number of
comparisons for that
@ @ algorithm

Lower Bounds on Sorting: Notation

= Suppose we want to sort the items in the array B[]

= Let's name the items
« a, is the item initially residing in B[1], a, is the
item initially residing in B[2], etc.
« In general, & is the item initially stored in Bi]

= Rule: an item keeps its name forever, but it can
change its location
« Example: after swap(B,1,5), a, is stored in B[5]
and ag is stored in B[1]

The Answer to a Sorting Problem

= An answer for a sorting problem tells where each of the a;
resides when the algorithm finishes

= How many answers are possible?

= The correct answer depends on the actual values
represented by each a

= Since we don’t know what the &, are going to be, it has to be
possible to produce each permutation of the a,

= For a sorting algorithm to be valid it must be possible for that
algorithm to give any of n! potential answers

Comparison Tree for Sorting

= Every sorting algorithm has = Comparison tree for sorting

Timevs. Height

= The worst-case time for a = What is the minimum possible

a corresponding

nitems:

comparison tree

« Note that other stuff
happens during the
sorting algorithm, we
just aren’t showing it in
the tree

= The comparison tree must
have n! (or more) leaves

comparison
tree

. . abc... bacd... cabd...
because a valid sorting N
algorithm must be able to
get any of n! possible n! leaves

answers

sorting method must be =
the height of its comparison
tree

« The height corresponds
to the worst-case
number of comparisons
Each comparison takes
O(1) time
The algorithm is doing
more than just
comparisons

height for a binary tree with n!
leaves?

Height = log(n!) = ©(n log n)

This implies that any
comparison-based sorting
algorithm must have a worst-
case time of Q(n log n)

« Note: this is a lower
bound; thus, the use of
big-Omega instead of
big-O

Using the Lower Bound on Sorting

Claim: | have a PQ

« Insert time: O(1)

« GetMax time: O(1)
= True or false?

False (for general sets)
because if such a PQ
existed, it could be used to
sort in time O(n)

Claim: | have a PQ
« Insert time: O(loglog n)
. GetMax time: O(loglog
n)
» True or false?

False (for general sets)
because it could be used to
sort in time O(n loglog n)

True for items with priorities in
range 1..n [van Emde Boas]
(Note: such a set can be
sorted in O(n) time)

Sorting in Linear Time

There are several sorting
methods that take linear
time

= Counting Sort
« sorts integers from a
small range: [0..K]
where k = O(n)
= Radix Sort
« the method used by the
old card-sorters
« sorting time O(dn)
where d is the number
of “digits”

= How do these methods get
around the Q(n log n) lower
bound?
« They don't use
comparisons

= What sorting method works
best?
« QuickSort is best
general-purpose sort
« Counting Sort or Radix
Sort can be best for
some kinds of data

