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Insertion Sort

■ Corresponds to how most 
people sort cards

■ Invariant: everything to left 
is already sorted

■ Works especially well when 
input is nearly sorted

■ Runtime
● Worst-case

▲ O(n2)

▲ Consider reverse-
sorted input

● Best-case
▲ O(n)

▲ Consider sorted input

// Code for sorting a[ ] an array of int
for (int i = 1; i < a.length; i++) {

int temp = a[ i ];
int k = i;
for (; k > 0 && a[k–1] > temp; k – –)

a[k] = a[k–1];
a[k] = temp;

}
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Merge Sort

■ Uses recursion (Divide & 
Conquer)

■ Outline (text has detailed 
code)

● Split array into two halves

● Recursively sort each half

● Merge the two halves

■ Merge = combine two sorted 
arrays to make a single sorted 
array

● Rule: Always choose the 
smallest item

● Time: O(n)

■ Runtime recurrence
● Let T(n) be the time to 

sort an array of size n
● T(n) = 2T(n/2) + O(n)

● T(1) = O(1)
● Can show by induction 

that T(n) = O(n log n)

■ Alternately, can show T(n) 
= O(n log n) by looking at 
tree of recursive calls
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Quick Sort
■ Also uses recursion (Divide & 

Conquer)

■ Outline

● Partition the array

● Recursively sort each piece 
of the partition

■ Partition = divide the array like 
this

■ p is the pivot item

■ Best pivot choices

● middle item

● random item

● median of leftmost, rightmost, 
and middle items

■ Runtime analysis (worst-case)

● Partition can work badly 
producing this:

● Runtime recurrence
T(n) = T(n–1) + O(n)

● This can be solved by 
induction to show T(n) = 
O(n2)

■ Runtime analysis (expected-
case)

● More complex recurrence

● Can solve by induction to 
show 
expected T(n) = O(n log n)

■ Can improve constant factor by 
avoiding QSort on small sets

< p p > p

p > p
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Heap Sort

■ Not recursive

■ Outline

● Build heap

● Perform removeMax on 
heap until empty

● Note that items are 
removed from heap in 
sorted order

■ Heap Sort is the only 
O(n log n) sort that uses no
extra space

● Merge Sort uses extra 
array during merge

● Quick Sort uses recursive 
stack

■ Runtime analysis (worst-
case)

● O(n) time to build heap 
(using bottom-up 
approach)

● O(log n) time (worst-
case) for each removal

● Total time: O(n log n)
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Sorting Algorithm Summary

■ The ones we have discussed

● Insertion Sort

● Merge Sort

● Quick Sort

● Heap Sort

■ Other sorting algorithms

● Selection Sort

● Shell Sort (in text)

● Bubble Sort

● Radix Sort

● Bin Sort

● Counting Sort

■ Why so many?  Do Computer 
Scientists have some kind of 
sorting fetish or what?

● Stable sorts: Ins, Mer

● Worst-case O(n log n): Mer, 
Hea

● Expected-case O(n log n): 
Mer, Hea, Qui

● Best for nearly-sorted sets: 
Ins

● No extra space needed: Ins, 
Hea

● Fastest in practice: Qui

● Least data movement: Sel
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Lower Bounds on Sorting: Goals

■ Goal: Determine the 
minimum time required to 
sort n items

■ Note: we want worst-case
not best-case time

● Best-case doesn’t tell us 
much; for example, we 
know Insertion Sort 
takes O(n) time on 
already-sorted input

● We want to determine 
the worst-case time for 
the best-possible
algorithm

■ But how can we prove 
anything about the best 
possible algorithm?

● We want to find 
characteristics that are 
common to all sorting 
algorithms

● Let’s try looking at 
comparisons
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Comparison Trees

■ Any algorithm can be 
“unrolled” to show the 
comparisons that are 
(potentially) performed

Example
for (int i = 0; i < x.length; i++)

if (x[i] < 0) x[i] = – x[i];

■ In general, you get a 
comparison tree

■ If the algorithm fails to 
terminate for some input 
then the comparison tree is 
infinite

■ The height of the 
comparison tree represents 
the worst-case number of 
comparisons for that 
algorithm

0 < length x[1] < 0

x[0] < 0

1 < length

2 < length

x[2] < 0
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Lower Bounds on Sorting: Notation

■ Suppose we want to sort the items in the array B[ ]

■ Let’s name the items

● a1 is the item initially residing in B[1], a2 is the 
item initially residing in B[2], etc.

● In general, ai is the item initially stored in B[i]

■ Rule: an item keeps its name forever, but it can 
change its location

● Example: after swap(B,1,5), a1 is stored in B[5] 
and a5 is stored in B[1]
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The Answer to a Sorting Problem

■ An answer for a sorting problem tells where each of the ai
resides when the algorithm finishes

■ How many answers are possible?

■ The correct answer depends on the actual values 
represented by each ai

■ Since we don’t know what the ai are going to be, it has to be 
possible to produce each permutation of the ai

■ For a sorting algorithm to be valid it must be possible for that
algorithm to give any of n! potential answers
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Comparison Tree for Sorting

■ Every sorting algorithm has 
a corresponding 
comparison tree

● Note that other stuff 
happens during the 
sorting algorithm, we 
just aren’t showing it in 
the tree

■ The comparison tree must 
have n! (or more) leaves 
because a valid sorting 
algorithm must be able to 
get any of n! possible 
answers

■ Comparison tree for sorting 
n items:

comparison
tree

abc...    bacd...                 cabd...

n! leaves
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Time vs. Height

■ The worst-case time for a 
sorting method must be ≥
the height of its comparison 
tree

● The height corresponds 
to the worst-case 
number of comparisons

● Each comparison takes 
Θ(1) time

● The algorithm is doing 
more than just 
comparisons

■ What is the minimum possible 
height for a binary tree with n! 
leaves?

Height ≥ log(n!) = Θ(n log n)

■ This implies that any
comparison-based sorting 
algorithm must have a worst-
case time of Ω(n log n)

● Note: this is a lower 
bound; thus, the use of 
big-Omega instead of 
big-O
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Using the Lower Bound on Sorting

Claim: I have a PQ
● Insert time: O(1)
● GetMax time: O(1)

■ True or false?

False (for general sets) 
because if such a PQ 
existed, it could be used to 
sort in time O(n)

Claim: I have a PQ
● Insert time: O(loglog n)
● GetMax time: O(loglog 

n)

■ True or false?

False (for general sets) 
because it could be used to 
sort in time O(n loglog n)

True for items with priorities in 
range 1..n [van Emde Boas] 
(Note: such a set can be 
sorted in O(n) time)
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Sorting in Linear Time

There are several sorting 
methods that take linear 
time

■ Counting Sort
● sorts integers from a 

small range: [0..k] 
where k = O(n)

■ Radix Sort
● the method used by the 

old card-sorters
● sorting time O(dn) 

where d is the number 
of “digits”

■ How do these methods get 
around the Ω(n log n) lower 
bound?

● They don’t use 
comparisons

■ What sorting method works 
best?

● QuickSort is best 
general-purpose sort

● Counting Sort or Radix 
Sort can be best for 
some kinds of data


