
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><!-- saved from
url=(0050)http://www.cs.umu.se/~jubo/ExJobbs/MK/patterns.htm -->

A CLASSIFICATION OF OBJECT-ORIENTED
DESIGN PATTERNS

Magnus Kardell (excerpted from)

Umeå University

Structural mechanisms

Structural criteria can be found in the approaches by Pree 9, Gamma 3 and Coad 4. Combining the brings these
categories or groups of patterns:

• patterns based on abstract coupling

• patterns based on recursive structures

• basic interaction and inheritance patterns

• patterns for structuring object-oriented software systems

• patterns related to the MFC-framework

• aggregate patterns

• interaction patterns

• class patterns

• object patterns

These categories can not be used together as they intersect each other. I will not investigate interpretations of these
groups further because I do not believe that structural mechanisms is a good criterion. The difficult part concerning
structural mechanisms is that it is very hard to define categories. Pree 9 investigates patterns structurally from the
aspects of hook and template methods and defines patterns at a higher level - metapatterns.

APPENDIX A - DESIGN PATTERN CATALOG

Singleton

Intent: Ensure that a class only has one instance, and provide a global point of access to it.

Classification: Creational, Object

Builder

Intent: Separate the building of a complex object from its representation so that the same construction process
can create different representations.

Classification: Creational, Object

Prototype
Intent: Specify the kinds of objects to create using a prototypical instance, and create new objects by copying
this prototype.

Classification: Creational, Object

Abstract Factory

Intent: Provide an interface for creating families of related objects without specifying their concrete classes.

Classification: Creational, Class

Factory Method

Intent: Define an interface for creating an object, but let subclasses decide which class to instantiate.

Classification: Creational, Class

Decorator

Intent: Attach additional responsibilities to an object dynamically. Decorators provide a flexible alternative to
sub-classing for extended functionality.

Classification: Structural, Object

Adapter(object)

Intent: Convert the interface of a class into another interface clients expect. Adapter lets classes work together
that couldn't otherwise because of incompatible interfaces.

Classification: Structural, Object

Bridge

Intent: Decouple an abstraction from its implementation so that the two can vary independently.

Classification: Structural, Object

Façade

Intent: Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

Classification: Structural, Object

Composite

Intent: Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

Classification: Structural, object

Chain of responsibility

Intent: Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle
the request. Chain the receiving objects and pass the request along the chain until an object handles it.

Classification:

Behavioural, object

Proxy

Intent: Provide a surrogate or placeholder for another object to control access to it.

Classification: Structural, object

Memento

Intent: Without violating encapsulation, capture an externalize an object's internal state so that the object can
be restored to this state later.

Classification: Behavioural, object

Command

Intent: Encapsulate a request as an object thereby letting you parameterize clients with different requests,
queue or log requests, and support undoable operations.

Classification: Behavioural, object

Strategy

Intent: Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the
algorithm vary independently from the clients that use it.

Classification: Behavioural, object

State

Intent: Allow an object to alter its behaviour when its internal state changes. The object will appear to change
its class.

Classification: Behavioural, object

Mediator

Intent: Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling
between by keeping objects from referring to each other explicitely, and it lets you vary their interaction
independently.

Classification: Behavioural, object

Observer

Intent: Define a one-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically.

Classification: Behavioural, object

Visitor

Intent: Represent an operation to be performed on the elements of an object structure. Visitor lets you define a

new operation without changing the classes of the elements on which it operates.

Classification: Behavioural, object

Iterator

Intent:

Provide a way to access the elements of an aggregate object sequentially without exposing its underlying
representation.

Classification:

Behavioural, object

Template method

Intent:

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. TM lets subclasses
redefine certain steps of an algorithm without changing the algorithms structure.

Classification:

Behavioural, class

Interpreter

Intent:

Given a language, define a representation for its grammar, along with an interpreter that uses the representation
to interpret sentences in the language.

Classification:

Behavioural, class

Flyweight

Intent: Use sharing to support large numbers of fine-grained objects efficiently.

Classification: Structural, object

APPENDIX B - OBJECT MODELS

To keep down the length of this appendix I will present a selected version of Coad's patterns. First I present a
full version of the fundamental pattern then I give an overview over the pattern families. The interaction family
is covered in greater detail.

The fundamental pattern (full)

#1 “Collection-Worker" Pattern the fundamental pattern

• Collection-worker is the fundamental object-model pattern

• All other object-model patterns are variations on this theme

• Typical object-connections

howManycalcForMe calcOverWorkerscalcForMe

howMuchcalcForMe rankWorkersrateMe

• Other notes

“aboutMe" help one think about what other attributes might be needed

“calcForMe" help one think about what specific calculations might be needed

“ rankMe" helps one think about what ordering or comparrison services might be

“rateMe" helps one think about what self-assessment services might be needed

Transaction patterns (overview)

Contains:

• actor-participant

• participant-transaction

• place-transaction

• specific item-transaction

• transaction-transaction line item

• transaction-subsequent transaction

• transaction line item- subsequent transaction line item

• item-line item

• specific item-line item

• item-specific item

• associate-other associate

• specific item-hierarchical item

Aggregate patterns (overview)

Contains:

• container- content

• container-container line item

• group-member

• assembly-part

• compound part-part

• packet-packet component

Interaction patterns (overview)

Contains: peer-peer, proxy-specific item, publisher-subscriber, sender- pass through
receiver, sender-lookup-receiver, caller-dispatcher-caller back, gatekeeper-request-
resource

http://www.cs.umu.se/~jubo/ExJobbs/MK/patterns.htm

