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Structural mechanisms

Structural criteria can be found in the approaches by Pree 9, Gamma 3 and Coad 4. Combining the brings these
categories or groups of patterns:

patterns based on abstract coupling

patterns based on recursive structures

basic interaction and inheritance patterns

patterns for structuring object-oriented software systems
patterns related to the MFC-framework

aggregate patterns

interaction patterns

class patterns

object patterns

These categories can not be used together as they intersect each other. | will not investigate interpretations of these
groups further because | do not believe that structural mechanismsis agood criterion. The difficult part concerning

structural mechanismsisthat it is very hard to define categories. Pree 9 investigates patterns structurally from the
aspects of hook and template methods and defines patterns at a higher level - metapatterns.

APPENDIX A - DESIGN PATTERN CATALOG
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Singleton
Intent: Ensure that aclass only has oneinstance, and provide a global point of accesstoit.

Classification: Creational, Object
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Intent: Separate the building of acomplex object from its representation so that the same construction process
can create different representations.

Classification: Creational, Object
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Prototype
Intent: Specify the kinds of objectsto create using a prototypical instance, and create new objects by copying

this prototype.
Classification: Creational, Object
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Intent: Provide an interface for creating families of related objects without specifying their concrete classes.



Classification: Creational, Class
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Intent: Define an interface for creating an object, but let subclasses decide which class toinstantiate.

Classification: Creational, Class
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Intent: Attach additional responsibilitiesto an object dynamically. Decorators provide aflexible alternative to
sub-classing for extended functionality.

Classification: Structural, Object
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Intent: Convert the interface of aclassinto another interface clientsexpect. Adapter lets classes work together
that couldn't otherwise because of incompatible interfaces.

Classification: Structural, Object
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Intent: Decouple an abstraction from its implementation so that the two can vary independently.

Classification: Structural, Object

Facade

Facade
Intent: Provide aunified interface to a set of interfacesin a subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

Classification: Structural, Object
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Intent:_Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

Classification: Structural, object
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Intent: Avoid coupling the sender of arequest to its receiver by giving more than one object a chance to handle
the request. Chain the receiving objects and pass the request along the chain until an object handlesit.

Classification:

Behavioural, object
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Proxy
Intent: Provide asurrogate or placeholder for another object to control accesstoit.

Classification: Structural, object
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I ntent: Without violating encapsulation, capture an externalize an object'sinternal state so that the object can
be restored to this state later.

Classification: Behavioural, object
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Intent: Encapsulate arequest as an object thereby letting you parameterize clients with different requests,
gueue or log requests, and support undoabl e operations.

Classification: Behavioural, object
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Intent: Define afamily of algorithms, encapsul ate each one, and make them interchangeable. Strategy lets the
algorithm vary independently from the clients that useit.

Classification: Behavioural, object
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Intent: Allow an object to alter itsbehaviour whenitsinternal state changes. The object will appear to change

itsclass.

Handle()

Classification: Behavioural, object
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Intent: Define an object that encapsulates how a set of objectsinteract. Mediator promotes |oose coupling
between by keeping objects from referring to each other explicitely, and it lets you vary their interaction

independently.

Classification: Behavioural, object
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Intent: Define aone-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically.

Classification: Behavioural, object
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Intent: Represent an operation to be performed on the elements of an object structure. Visitor letsyou define a



new operation without changing the classes of the elements on which it operates.

Classification: Behavioural, object
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Intent:

Provide away to access the elements of an aggregate object sequentially without exposing its underlying
representation.

Classification:

Behavioural, object

AbstractClass
Primitive Operation1()

TemplateMethod() o= o .
FrimitiveOperation { ) Frimitive Operation2()

PrimitiveQperation()

t

ConcreteClass
PrimitiveQperation1 ()
PrimitiveQperation()

Template method

Intent:

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. TM lets subclasses
redefine certain steps of an algorithm without changing the algorithms structure.

Classification:



Behavioural, class

Inter preter
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I ntent:

Given alanguage, define arepresentation for its grammar, along with an interpreter that uses the representation
to interpret sentencesin the language.

Classification:

Behavioural, class
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Intent: Use sharing to support large numbers of fine-grained objects efficiently.

Classification: Structural, object



APPENDIX B - OBJECT MODELS

To keep down the length of this appendix | will present a selected version of Coad's patterns. First | present a
full version of the fundamental pattern then | give an overview over the pattern families. The interaction family
iscovered in greater detail.

The fundamental pattern (full)

#1 “ Collection-Worker" Pattern the fundamental pattern

Collection-worker is the fundamental object-model pattern
All other object-model patterns are variations on this theme
Typical object-connections

howM anycal cForM e calcOverWorkerscalcForMe

howM uchcal cForMe rankWorkersrateM e

Other notes
“aboutMe" help one think about what other attributes might be needed
“calcForMe" help one think about what specific cal culations might be needed
“ rankMe" hel ps one think about what ordering or comparrison services might be

“rateMe" helps one think about what self-assessment services might be needed

Transaction patterns (overview)
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Contains:

actor-participant
participant-transaction
place-transaction

specific item-transaction
transaction-transaction line item
transaction-subsequent transaction
transaction line item- subsequent transaction line item
item-line item

specific item-line item
item-specific item

associ ate-other associate

specific item-hierarchical item

Adaregate patterns (overview)
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Contains:

container- content

container-container line item

group-member

assembly-part

compound part-part

packet-packet component

Interaction patterns (overview)
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Contains: peer-peer, proxy-specific item, publisher-subscriber, sender- pass through
receiver, sender-lookup-receiver, caller-dispatcher-caller back, gatekeeper-request-

resource
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