A CLASSIFICATION OF OBJECT-ORIENTED
DESIGN PATTERNS

Magnus Kardell (excerpted from)
Umea University

Structural mechanisms

Structural criteria can be found in the approaches by Pree 9, Gamma 3 and Coad 4. Combining the brings these
categories or groups of patterns:

patterns based on abstract coupling

patterns based on recursive structures

basic interaction and inheritance patterns

patterns for structuring object-oriented software systems
patterns related to the MFC-framework

aggregate patterns

interaction patterns

class patterns

object patterns

These categories can not be used together as they intersect each other. | will not investigate interpretations of these
groups further because | do not believe that structural mechanismsis agood criterion. The difficult part concerning

structural mechanismsisthat it is very hard to define categories. Pree 9 investigates patterns structurally from the
aspects of hook and template methods and defines patterns at a higher level - metapatterns.

APPENDIX A - DESIGN PATTERN CATALOG

Singleton
adaf inicuslriancs
aingatonliata
aiafic Inaiancs]) [ehl T LAl j
SingledonCpearasion| }

GestSinghatonDat))

Singleton
Intent: Ensure that aclass only has oneinstance, and provide a global point of accesstoit.

Classification: Creational, Object

Directar builder Builder
fabstract}
-Constract) o +BuildPart(3
1
i 1
. . Concrete Builder
far all abjects in structure { “BuidPant
builder- +Build Part() 1 GetResutt()

Intent: Separate the building of acomplex object from its representation so that the same construction process
can create different representations.

Classification: Creational, Object

Cliert Prototype
- prototype
-Operationt) '? “Clonet)
1
i / \
Concrete Prototype?
p = pratatype- > Claner] D] | BoncretePrototypet | |
-Clanet 3 £ -Clanel) o
1 1
1 1
1 1
retum copy of self I}] retum copy of self I}]

Prototype
Intent: Specify the kinds of objectsto create using a prototypical instance, and create new objects by copying

this prototype.
Classification: Creational, Object

Abstract Factory

AbstractFactory
{ abstract }
CreateProducta)
CreateProductBi)

N

| ConcreteFactory1 | ConcreteFactory2
CreateProductA]) CreateProductad)

CreateProductB() CreateProductB()

Intent: Provide an interface for creating families of related objects without specifying their concrete classes.

Classification: Creational, Class

Factory Method

Creator
Factorybethod()
AnOperationi) B--H----| product=FactoryMethodd [j
F
i ConcreteCreator
FactoryMethod() @ - {-- - -- return nesy ConcreteProduct Il]

Intent: Define an interface for creating an object, but let subclasses decide which class toinstantiate.

Classification: Creational, Class

Decor ator
Component
1 abstract }
Operation)
/ ‘\ component
| ConcreteComponent ~ Decorator |
Cperation] Operation]) d. - |- | component-=Operstion) Ij
| ConcreteDecoratorA | ConcreteDecoratorB
| addedstate Ciperariont) o —— - - - | Decorator:: Operation)
Operationt) AddedBehaviour] AdldedBehayviour]

Intent: Attach additional responsibilitiesto an object dynamically. Decorators provide aflexible alternative to
sub-classing for extended functionality.

Classification: Structural, Object

Target
Regquest()
I
Adaptee
Adapter
Adapter__| adaptee SpecificReguest()

Request(y =

adaptee-bSpeciﬂcRequest(}j

Adapter (object)

Intent: Convert the interface of aclassinto another interface clientsexpect. Adapter lets classes work together
that couldn't otherwise because of incompatible interfaces.

Classification: Structural, Object

Bridge

Implementor

Abhstraction
Operationimpr)

Operation 1 = .

-
"

~
[

imp-=Operationlmpr j

ConcretelmplementorB
Operationlmpd)

Refined

Ahstraction ConcretelmplementorA

Operationimgl

Intent: Decouple an abstraction from its implementation so that the two can vary independently.

Classification: Structural, Object

Facade

Facade
Intent: Provide aunified interface to a set of interfacesin a subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

Classification: Structural, Object

Component
1 abstract }

Operationt)

Addi Component: <)
RemovelComponent:)
GetChildiint: =)

Composite

/ \ children
Leaf L Composite for all g in children
Operation] Operation] 1 $F----- o[- g Operation)
A)
Remaover)
GetChildi])

Intent:_Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

Classification: Structural, object

Chain of responsibility

Client

Handler
[abstract }

HandleRequest() SuCCcessor

e

‘\

'HandleReguest()

ConcreteHandler1

ConcreteHandler2

'HandleReguest()

Intent: Avoid coupling the sender of arequest to its receiver by giving more than one object a chance to handle
the request. Chain the receiving objects and pass the request along the chain until an object handlesit.

Classification:

Behavioural, object

Subject
Fequest]
Real Subject realSubject Prosy
Request; Request,) “*+q--- rEEISubject-}Request(h

Proxy
Intent: Provide asurrogate or placeholder for another object to control accesstoit.

Classification: Structural, object

Memento
Originator Memento
state state memento Caretaker
SethementolMemento; m) [GetStatel) I—
Crestetdementol) S SetStatel)
.-'; o -
T L .
e N b -
return nes Mementol ztate) j state = m-=GetStatel) j

I ntent: Without violating encapsulation, capture an externalize an object'sinternal state so that the object can
be restored to this state later.

Classification: Behavioural, object

Command

Command
Client Invoker
. | abstract }
Executel)
F1
L Receiver receiver ConcreteCommand
Actian() Executel) o
1

receiver-=Action]) Il]

Intent: Encapsulate arequest as an object thereby letting you parameterize clients with different requests,
gueue or log requests, and support undoabl e operations.

Classification: Behavioural, object

Strategy
Context strategy Strategy
Contextinterface) . { abstract }
Algarithminterface()

/ N

ConcreteStrategyll ConcreteStrategy
Algorithiminterface() Algarithminterfacel)

Intent: Define afamily of algorithms, encapsul ate each one, and make them interchangeable. Strategy lets the
algorithm vary independently from the clients that useit.

Classification: Behavioural, object

]
Q
)

Context

Request() &

state

{ ahstract }

State

state-=Handlel) B}

Handleg)

/

\

ConcreteStatef

ConcreteStateB

Handle()

Intent: Allow an object to alter itsbehaviour whenitsinternal state changes. The object will appear to change

itsclass.

Handle()

Classification: Behavioural, object

M ediator

Mediator
{ abstract }

']

Colleague
{abstract

e

N

ConcreteColleague1

ConcreteColleague2

ConcreteMediator

|

Intent: Define an object that encapsulates how a set of objectsinteract. Mediator promotes |oose coupling
between by keeping objects from referring to each other explicitely, and it lets you vary their interaction

independently.

Classification: Behavioural, object

Observer

Subject Observer
Aftach{Ohzerer: o) ohservers { abstract }
Detach{Observer: o) M -]
Mot} oo | Lpdatad)

ry return news Mementn{state’q *
ConcreteSubject _ ConcreteObserver
subjectState subject [opsemverState
GetState) G Update() =
SetState() ! 7
! =
return subjectState j ohserverState = subject-= GetState() j

Intent: Define aone-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically.

Classification: Behavioural, object

Visitor
Visitor
[abstract }
YisitCancElemas)
YisitConcElemBl)
i ConcreteVisitor1 i ConcreteVisitor2
YisitConcElemA[ConcElemA: cea) YisitConcElemA[ConcElemA: cea)
YisitConcElemBi{ConcElemB: ceh) YisitConcElemBi{ConcElemB: ceh)
Element
ObjectStructure - { abstract }
Acceptivisitor v)

ConcreteElementA ConcreteElementB
Acceptlisitor:) & Accept(Misitar) 2
OperationA() ;r OperationB() K

.-'z '.I)
[_ .
v =WisitConcElemAthis) v->YisitConcElemBithis) Ij

Intent: Represent an operation to be performed on the elements of an object structure. Visitor letsyou define a

new operation without changing the classes of the elements on which it operates.

Classification: Behavioural, object

Iterator
lterator
Aggregate { abstract }
i [abstract } First()
Createlterator]) Met()
lsDonel)
Currantltem)

t

ConcreteAggregate Concretelterator
Createlteratorf) &

receiver=Action]) IT

Intent:

Provide away to access the elements of an aggregate object sequentially without exposing its underlying
representation.

Classification:

Behavioural, object

AbstractClass
Primitive Operation1()

TemplateMethod() o= o .
FrimitiveOperation {) Frimitive Operation2()

PrimitiveQperation()

t

ConcreteClass
PrimitiveQperation1 ()
PrimitiveQperation()

Template method

Intent:

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. TM lets subclasses
redefine certain steps of an algorithm without changing the algorithms structure.

Classification:

Behavioural, class

Inter preter

Client ConText

AbstractExpression
{ abatract }
Irterpret{context:)

AN

TerminalExpression HonTerminalExpression
Interpret{conte:xt: o) Irterpreticonte:xt: o)

I ntent:

Given alanguage, define arepresentation for its grammar, along with an interpreter that uses the representation
to interpret sentencesin the language.

Classification:

Behavioural, class

Flyweight

FlyweightFactory fhyneeights Fhyweight
GetFlyweight(key: kjf} kT OperationfextrinsicState: =)
P e N Client
g

if (fhywweight[k] exists) {

return existing flywweight; } ~ -
elze { ConcreteFlyweight UnsharedConcreteFlyweight

irtrinsic=tate intrinsicstate

create neww fivweight;
add it to pool of flyweights;
return the newy flyweight; 3

OperationfextrinzicState; =)

Operation(exdrinzicState: =)

Intent: Use sharing to support large numbers of fine-grained objects efficiently.

Classification: Structural, object

APPENDIX B - OBJECT MODELS

To keep down the length of this appendix | will present a selected version of Coad's patterns. First | present a
full version of the fundamental pattern then | give an overview over the pattern families. The interaction family
iscovered in greater detail.

The fundamental pattern (full)

#1 “ Collection-Worker" Pattern the fundamental pattern

Collection-worker is the fundamental object-model pattern
All other object-model patterns are variations on this theme
Typical object-connections

howM anycal cForM e calcOverWorkerscalcForMe

howM uchcal cForMe rankWorkersrateM e

Other notes
“aboutMe" help one think about what other attributes might be needed
“calcForMe" help one think about what specific cal culations might be needed
“ rankMe" hel ps one think about what ordering or comparrison services might be

“rateMe" helps one think about what self-assessment services might be needed

Transaction patterns (overview)

Oetar Place

J
\' Transaction —
Participart Specificlemn

/C/ SubszequentTransaction

TransactionLine kem

/ SubsequertTransactionLinetern

ttermn

Contains:

actor-participant
participant-transaction
place-transaction

specific item-transaction
transaction-transaction line item
transaction-subsequent transaction
transaction line item- subsequent transaction line item
item-line item

specific item-line item
item-specific item

associ ate-other associate

specific item-hierarchical item

Adaregate patterns (overview)

CortainerLinefteam

Assembly

Contains:

container- content

container-container line item

group-member

assembly-part

compound part-part

packet-packet component

Interaction patterns (overview)

Container Group
g
Cortert hermber
| CompoundPart_ | | Packet |
[i
Fart Packet Component

Peer
|aboLtide
calcOverPearsl)
rankPeersl)
calcForhel)
ratehel

Proxy

|forwardReguest])

1

1“t

| Specifichem___ |
| abouthde
executeRequest()

calcFortder)

| PassThrough__|
| aboLithle

f
Sender
| aboLthte
invokeReceiverr)
gethlextReceiver()

invokeReceiver)

Publisher
|abouthle

notifySubscribers))

1.%

1

Subscriber
actionTaTake
| skt 1
receivelatifications)
executed.clion])

Lookup

abouthle

|
Receiver
[ahouthie
execUteReguest!)

Caller

| akoLthde

receiveCalBackr)

requestCallBackl)

Contains: peer-peer, proxy-specific item, publisher-subscriber, sender- pass through
receiver, sender-lookup-receiver, caller-dispatcher-caller back, gatekeeper-request-

resource

zelectReceiver) 1%
Dispatcher CallerBack
| abaLthie [abaLthie
zelectCallerBackl) makeCallBacki)
activateCallerBack() 1.% rateidel)

http://ww. cs. unu. se/ ~j ubo/ ExJobbs/ MK/ patterns. ht m

