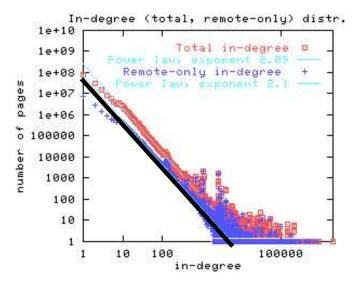
Topics: Two mathematical models for the evolution of the Web's hyperlink structure.

I. The Web's in-degree distribution Here is Figure 1 of Broder et al. (2000), which shows the in-degree distribution, on a log-log scale, for their 200M-document Web crawl. The line corresponding to $\alpha=2.1$ is shown in black.



This means that the ((mostly?) human-authored) data is following the relationship

 $\log(\text{number of documents with in-degree } x) \approx -2.1 \log(x)$

or that the number of documents with in-degree x is $x^{-2.1}$. Also, for reasonable choices of number D, the number of documents with in-degree at least D is non-negligible: the distribution is said to be "heavy-tailed".

- II. Web-evolution models: Template and conventions We consider t = 0, 1, 2, ... We pre-determine constants $n_0 \ge 1$ and $\ell > 0$.
 - We assume n_0 "original" documents exist at time t=0; they have no links between them.
 - At each time step $t \ge 1$, we add a new document, identified by the time. For example, at time t = 100, we create a new document d_{100} .

When a given document d_j is created (that would be time-step j), we probabilistically choose ℓ links fromt d_j to some of the $n_0 + (j-1)$ pre-existing documents, allowing repeated links to the same document.

- III. Estimates for in-degree We are interested in computing In(docID = j, time = t), which is our estimate of d_j 's in-degree at time t (where $t \ge j$: there's no point computing the in-degree of a document at a time when the document didn't exist). This estimate is used as a stepping stone to working out whether the in-degree distribution under a given model matches the data observed in the Web.
- IV. Uniform attachment ("completely random") 1 We suppose that links are chosen uniformly at random to the pre-existing documents this means that at a given time t, each pre-existing page has the same probability, $1/(n_0 + (t-1))$, of being selected as the "receiving end" of a given new link. We then assume that

$$\frac{d \text{In}(\text{docID} = j, \text{time} = t)}{dt} = \ell \frac{1}{n_0 + t - 1}.$$

Integrating with respect to t on both sides gives us that

$$In(docID = j, time = t) = \ell \times ln(n_0 + t - 1) + c(j)$$

and we can compute c(j) for $j \ge 1$ by observing that $\operatorname{In}(\operatorname{docID} = j, \operatorname{time} = j) = 0$. (It's actually important to compute the constant: since it depends on j, it is what differentiates the in-degree estimate for one document from that of another.)

¹This model is adapted from Erdös and Rényi (1960), who considered the properties of "random graphs".