Agenda: Finish term-frequency weighting; tf-idf weighting.

I. Reminder: term-frequency weighting

Define freq_{i,j} (term-document frequency) as the number of times term w_i occurs in document d_j . We then set the document vector \overrightarrow{d}_j for document d_j as follows:

$$\overrightarrow{d}_j = \left(\frac{\text{freq}_{1,j}}{L_j}, \frac{\text{freq}_{2,j}}{L_j}, \dots, \frac{\text{freq}_{m,j}}{L_j}\right)$$

where $L_j = \sqrt{\sum_{i=1}^m \operatorname{freq}_{i,j}^2}$ is the length-normalization factor.

II. Example corpus and query from last time

Vocabulary: w_1 : cats; w_2 : dogs; w_3 : news

 d_4 : "cats news"

 d_5 : "cats news cats news"

 d_6 : "cats dogs news news dogs"

q: "cats dogs"

III. Inverse document frequency We define IDF_i , the inverse document frequency of term w_i , as

$$n/\text{docfreq}_i$$
,

where docfreq_i is the number of documents in the n-document corpus that contain w_i .

For example, suppose we have $w_1 = \text{"Bill"}$, $w_2 = \text{"the"}$, and $w_3 = \text{"I"}$, and we have in our corpus just the following two documents, where we've highlighted occurrences of w_1 , w_2 , and w_3 :

 d_1 : Bill Gates of Microsoft spoke at yesterday's convention. We were kind of surprised at some of the predictions he made, but later on some other presentations clarified the situation. After all, the industry's followed these trends so far.

 d_2 : My friend Bill says weird versions of common proverbs. Just the other day, he said "Gates make for good neighbors." I also heard him say, "Microsoft wasn't built in a day", which is true, I have to admit.

We have $IDF_1 = 1$ and $IDF_3 = 2$. Note that we would get the same IDF for w_3 ="I" whether "I" occurred once in d_2 or 40 times.

IV. Tf-idf weighting: This alternative to term-frequency weighting converts a document d_j to the vector

$$\overrightarrow{d}_{j} = \left(\frac{\text{freq}_{1,j} \times \text{IDF}_{1}}{L_{j}}, \frac{\text{freq}_{2,j} \times \text{IDF}_{2}}{L_{j}}, \dots, \frac{\text{freq}_{m,j} \times \text{IDF}_{m}}{L_{j}}\right)$$

where $L_j = \sqrt{\sum_{i=1}^{m} (\text{freq}_{i,j} \times \text{IDF}_i)^2}$.