CS/ENGRI 172, Fall 2002

9/27/02: Lecture Thirteen Handout

Topics: Nearest-neighbor learning; introduction to Turing machines, a general model of computation.

The nearest-neighbor learning algorithm

Assume that there is some function value distinguished as the *default*. As before, $\overrightarrow{x}^{(i)}$ denotes the i^{th} oracle example.

Output default as the guess of $\overrightarrow{x}^{(1)}$'s label For each subsequent example $\overrightarrow{x}^{(i)}$ Find the stored instance $\overrightarrow{x}^{(j)}$, j < i, that minimizes $\operatorname{dist}(\overrightarrow{x}^{(j)}, \overrightarrow{x}^{(i)})$ Output the oracle's (previously-given) label of $\overrightarrow{x}^{(j)}$

A sample Turing machine

This Turing machine has two internal states, q_1 and q_2 , with q_1 being the initial state. The Turing machine's symbols are A, B, \vdash , and \perp .

Note that this TM never halts.