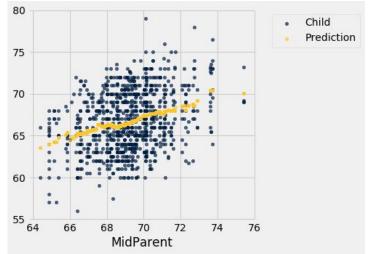
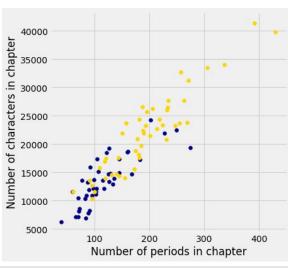


Lecture 27

Correlation

Announcements

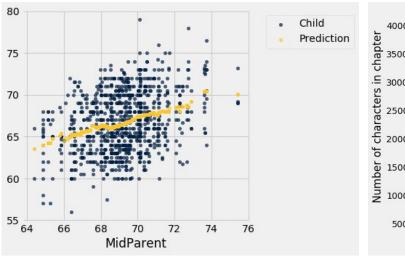

- Project 2, Part 2, due Friday 5:59PM
- Prelim 2, April 20, 8:30PM-10PM in Kennedy 116 (here) for Ithaca-resident students

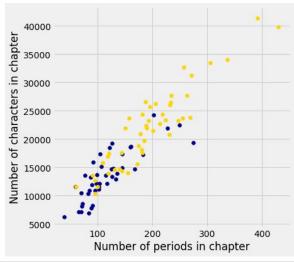

 - Coverage from Lecture 12 Lecture 26 (Monday)
 Review session on Saturday 3:30PM-5:30PM, room TBA
 - Review sheet and sample exam posted on Canvas.
 - NB: The sample exam is not one I wrote, and is likely to be somewhat different than what I will do.
 - Table of functions included again, allowed a double-sided sheet of notes you make yourself

Prediction

- Guess outcomes in the future, based on available data
- Our simple goal: predict value of one variable based on

another





(Demo)

Prediction

If we have a line describing the relation between two variables, we can make predictions

Relation Between Two Variables

Visualize then quantify

- Any discernible pattern?
- Simplest kind of pattern: Linear? Non-linear?

(Demo)

The Correlation Coefficient r

- Developed by Karl Pearson (1857-1936) based on work of Francis Galton (1822-1911)
- Measures linear association
- $-1 \le r \le 1$
 - \circ r = 1: scatter is perfect straight line sloping up
 - r = -1: scatter is perfect straight line sloping down
- r = 0: No linear association; uncorrelated (Demo)

Definition of *r*

Correlation Coefficient (r) =

of product of standard standard units

Measures how clustered the scatter is around a straight line