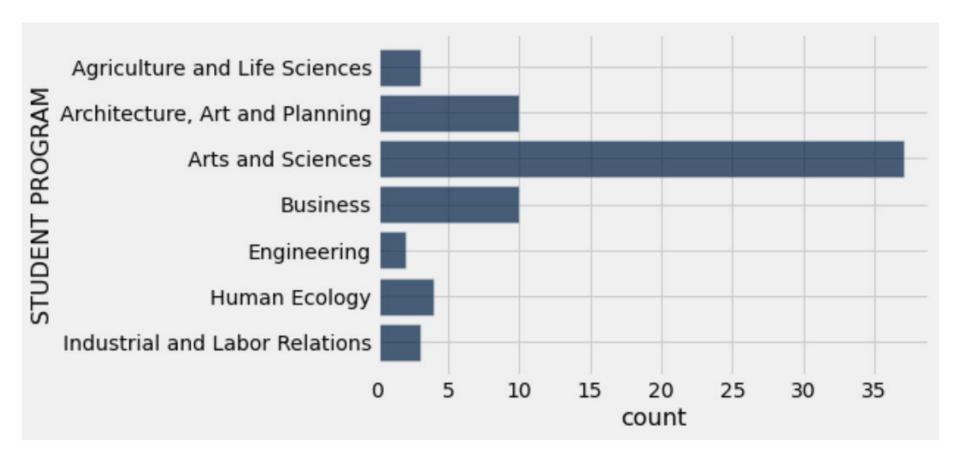


Lecture 4

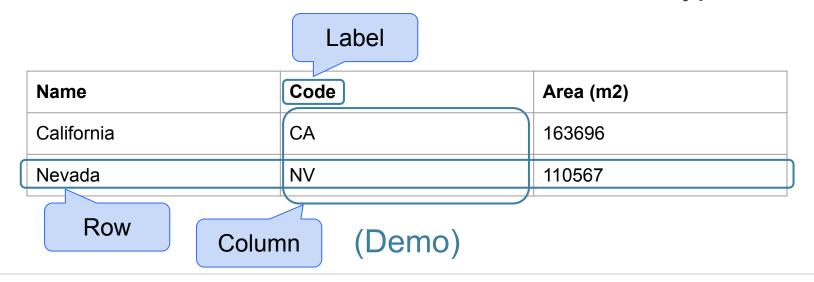
Data Types


Announcements

- Website: <u>cornell-dsfa.orq</u>.
- If you are just joining...
- Reminder: HW 1 out, due Friday by 6PM, bonus point for turn-in on Thursday.
 - Need help? See office hours in Zoom, and Ed Discussions via Canvas.

Announcements

- If you want to follow along for the lecture notebook, go to Canvas->Assignments->Lecture Demos.
 - If lec04.ipynb not there, try clicking "Actions" (upper right corner), "Reset assignment". Note: this will erase (I think) whatever you had in previous lecture demo notebooks.
 - Note: You need to run the first cell in the demo!



Tables

Table Structure

- We organize our data in tables
- A Table is a sequence of labeled columns
- Data within a column should be of the same "type"

Table Operations

- t.select(label) constructs a new table with just the specified columns
- t.sort(label) constructs a new table, with rows sorted by the specified column

Visualization

• t.barh(label) - horizontal bar chart with specified column as the y-axis categories

Table Operations

• t.where(label, condition) - constructs a new table with just the rows that match the condition

Arithmetic

Arithmetic Operators

Operation	Operator	Example	Value
Addition	+	2 + 3	5
Subtraction	-	2 - 3	-1
Multiplication	*	2 * 3	6
Division	1	7/3	2.66667
Remainder	%	7 % 3	1
Exponentiation	**	2 ** 0.5	1.41421

Parentheses Exponents Multiplication Division Addition Subtraction

Ints and Floats

Python has two numeric types

- int: an integer of any size
- float: a number with an optional fractional part

An int never has a decimal point; a float always does

A float might be printed using scientific notation

Three limitations of float values:

- They have limited size (but the limit is huge)
- They have limited precision of 15-16 decimal places
- After arithmetic, the final few decimal places can be wrong

Strings

Text and Strings

A string value is a snippet of text of any length

- 'a'
- 'word'
- "there can be 2 sentences. Here's the second!"

Strings that contain numbers can be converted to numbers

- int('12')
- float('1.2')

Any value can be converted to a string

• str(5)

Discussion Question

Assume you have run the following statements

$$x = 3$$
 $y = '4'$
 $z = '5.6'$

What's the source of the error in each example?

```
A. x + y
B. x + int(y + z)
C. str(x) + int(y)
D. str(x, y) + z
```

Arrays and Ranges

Arrays

An array contains a sequence of values

- All elements of an array should have the same type
- Arithmetic is applied to each element individually
- When two arrays are added, they must have the same size; corresponding elements are added in the result
- A column of a table is an array

Ranges

A range is an array of consecutive numbers

- np.arange (end):
 An array of increasing integers from 0 up to end
- np.arange(start, end):
 An array of increasing integers from start up to end
- np.arange(start, end, step):
 A range with step between consecutive values

The range always includes start but excludes end