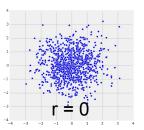
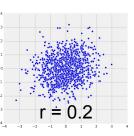
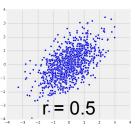
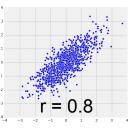


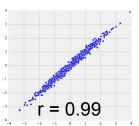
Lecture 30

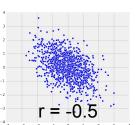

Linear Regression


Announcements


Survey completion rate: 65%
 If we get it to 85%, everyone gets a bonus to final grade

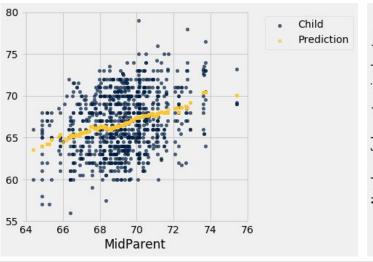

The Correlation Coefficient r

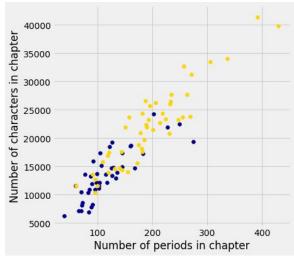

- Measures linear association
- Based on standard units
- $-1 \le r \le 1$
 - \circ r = 1: scatter is perfect straight line sloping up
 - r = -1: scatter is perfect straight line sloping down
- r = 0: No linear association; *uncorrelated*



Definition of r

Correlation Coefficient (r) =

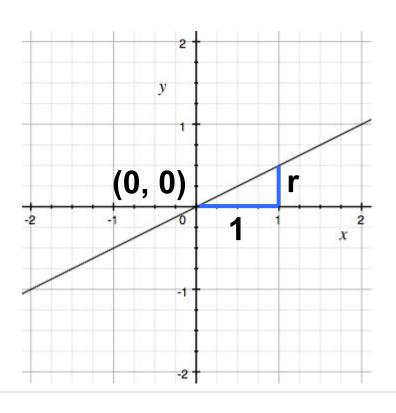

average of	product of	x in standard units	and	y in standard units
---------------	------------	---------------------------	-----	---------------------------


Measures how clustered the scatter is around a straight line

Properties of r

- r is a pure number, with no units
- r is not affected by changing units of measurement
- r is not affected by switching the horizontal and vertical axes

If we have a line describing the relation between two variables, we can make predictions



- Problem: given a known x value, predict y, where both are in standard units
- Solution:
 - Compute r
 - Predict that y = r * x
- Why is that a line?

Algebra review:

Equation of a Line

$$y = r * x$$

In general:

$$y = a * x + b$$
(a is slope, b is intercept)

- Problem: given a known x value, predict y, where both are in standard units
- Solution:
 - Compute r
 - Predict that y = r * x
- Why is that a line?
- Why use that line?

- Problem: given a known x value, predict y, where both are in standard units
- Solution:
 - Compute *r*
 - Predict that y = r * x
- Why is that a line?
- Why use that line?
 - It is a version of the graph of averages, smoothed to a line (Demo)

• **Predict** y = r * x (in standard units)

- Example:
 - x = 2 (in standard units)
 - \circ r = .75
 - What is the prediction for *y* (in standard units)?
 - A. 0.0
 - **B**. 0.75
 - **C**. 1.5
 - **D**. 2.0

• **Predict** y = r * x (in standard units)

- Example:
 - A course has a typical prelim (mean=70, std=10), and a hard final (mean=50, std=12)
 - The scores on the exams look linearly related when visualized, with r = .75
 - Predict a student's final exam score, given that their prelim score was 90 (go ahead and work on that)

- Prelim: mean=70, std=10
 - x = 90 = 70 + 2*10 in original units = 2 standard units
- Prediction:
 - y = r * x = .75 * 2 = 1.5 standard units
- Final: mean=50, std=12
 - y = 50 + 1.5 * 12 = 68 in original units

- **Predict** y = r * x (in standard units)
- If r = .75 and x is 2 std above mean, then prediction for y is 1.5 std above mean
- So y predicted to be closer to mean than x

- "Regression to the mean"
 - Children with exceptionally tall parents tend not to be as tall
 - Galton called it "regression to mediocrity"

Linear Regression

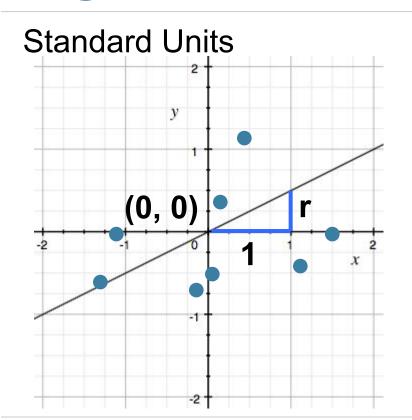
```
(y in su) = r * (x in su)
```

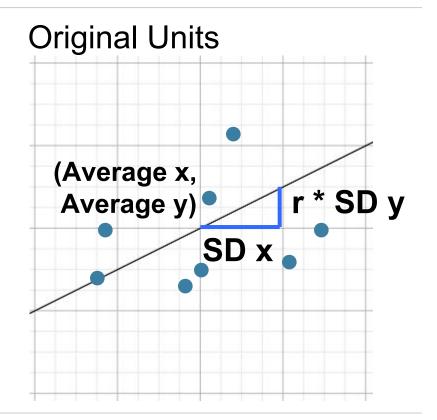
$$x - mean(all x)$$

(y in su) = r * $\frac{x - mean(all x)}{std(all x)}$

$$y - mean(all y)$$
 $x - mean(all x)$
 $= r *$ $=$ $std(all y)$ $std(all x)$

Do some algebra to put that in the form y = slope * x + intercept...


Slope and Intercept


$$y = slope * x + intercept$$

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

Regression Line

