- Previous class:
- User-defined function
- Nested loops
- Now:
-Working with colors
- I-dimensional array-vector

Plot a continuous function (from a table of values)

x	$\sin (\mathrm{x})$
0.00	0.0
1.57	1.0
3.14	0.0
4.71	-1.0
6.28	0.0

Plot based on 5 points

Built-in function linspace
$x=\operatorname{linspace}(1,3,5)$

	1.0	1.5	2.0	2.5	3.0

$x=\operatorname{linspace}(0,1,101)$

Vectorized

element-by-element arithmetic operations on arrays

Reciprocate
x 1

Matlab code:

Color is a 3-vector, sometimes called the RGB values

- Any color is a mix of red, green, and blue
- Example:

$$
\text { colr }=\left[\begin{array}{lll}
0.4 & 0.6 & 0
\end{array}\right]
$$

- Each component is a real value in $[0,1]$
- $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ is black
- [$\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]$ is white
- $\left[\begin{array}{lll}\hline .2 & .2 & .2\end{array}\right]$ is dark gray
- $\left[\begin{array}{lll}.4 & . & .1\end{array}\right]$ is a colorized hue

Mix two colors
Implement this function:
function newc = mixEqual(c1,c2)
\% Average colors c1 and c2.
\% c1, c2, and newc are vectors
\% representing colors.
\% Display the three colors.

Let's show the "paint chips" from white to black

Name the script white2black

I-d array: vector

- An array is a named collection of like data organized into rows or columns
- A I-d array is a row or a column, called a vector
- An index identifies the position of a value in a vector

Accessing values in a vector
score

Given the vector score ...
score(4)= 80;
score(5)= (score(4)+score(5))/2;
k= 1;
score(k+1)= 99;

Array index starts at I

$$
\times \begin{array}{c|c|c|c|c|c|}
\hline 5 & .4 & .91 & -4 & -1 & 7 \\
\hline 1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

Let k be the index of vector x , then

- k must be a positive integer
- $\mathrm{I}<=\mathrm{k}<=$ length (x)
- To access the $\mathrm{k}^{\text {th }}$ element: $\mathrm{x}(\mathrm{k})$

Drawing a single line segment
$\mathrm{a}=0$; $\% \mathrm{x}$-coord of pt 1
$b=1 ; \%$-coord of pt 1
c= 5; \% x-coord of pt 2
d= 3; \% y-coord of pt 2
plot ([ac], [bld, '-*')

Drawing a polygon (multiple line segments)
\% Draw a rectangle with the lower-left
\% corner at (a,b), width w, height h.
$\mathrm{x}=$ []; \% x data
$y=[\quad] ; \%$ y data
plot(x, y)

Fill in the missing vector values!

Example

- Write a program fragment that calculates the cumulative sums of a given vector \mathbf{V}.
- The cumulative sums should be stored in a vector of the same length as \mathbf{V}.
$\mathrm{I}, 3,5,0 \quad \mathrm{v}$
$\mathrm{I}, 4,9,9$ cumulative sums of \mathbf{v}

A twinkling constellation

- Write a script that generates 9 random positions-the configuration of my constellation
- Simulate 10 rounds of twinkling
- In each round, each star is equally likely to be lit or black
- Can you add some random adjustment to the color of the star?

