
CS/INFO 1305 Summer 2011

1

1

Previous class:
Play with sound files
Practice working with vectors

Now:

Play with image files
2-dimensional array—matrix

2

A picture as a matrix—2-dimensional array

1458-by-2084

150 149 152 153 152 155
151 150 153 154 153 156
153 151 155 156 155 158
154 153 156 157 156 159
156 154 158 159 158 161
157 156 159 160 159 162

4

2-d array: matrix

An array is a named collection of like data organized
into rows and columns
A 2-d array is a table, called a matrix
Two indices identify the position of a value in a matrix,
e.g.,

mat(r,c)

refers to component in row r, column c of matrix mat
Array index starts at 1
Rectangular: all rows have the same #of columns

c

r

5

Creating a matrix

Built-in functions: ones, zeros, rand
E.g., zeros(2,3) gives a 2-by-3 matrix of 0s

“Build” a matrix using square brackets, [], but
the dimension must match up:

[x y] puts y to the right of x
[x; y] puts y below x
[4 0 3; 5 1 9] creates the matrix
[4 0 3; ones(1,3)] gives
[4 0 3; ones(3,1)] doesn’t work

4 0 3

5 1 9

4 0 3

1 1 1

6

% What will M be?
M = [ones(1,3); 1:4]

1 1 1 0
1 2 3 4

1 1 1
1 2 3

Error – M not created

A

B

C

8

A= [1 1]
A= [A’ ones(2,1)]
A= [1 1 1 1; A A]

a. 3-by-4 matrix
b. 4-by-3 matrix
c. vector of length 12
d. Error

What will A be?

A

B

C
D

CS/INFO 1305 Summer 2011

2

9

Working with a matrix:
size and individual components

Given a matrix M

[nr, nc]= size(M) % nr is #of rows,
% nc is #of columns

M(2,4)= 1;
disp(M(3,1))
M(1,nc)= 4;

2 0.5-1 -3

52 7.581 2

5 98.5-3 10

3 768 7

10

Images can be encoded in different ways

Common formats include
JPEG: Joint Photographic Experts Group
GIF: Graphics Interchange Format

Data are compressed
We will work with jpeg files:
imread: read a .jpg file and convert it to a “normal
numeric” array that we can work with
imwrite: write an array into a .jpg file (compressed
data)

11

Grayness: a value in [0..255]

150 149 152 153 152 155
151 150 153 154 153 156
153 151 155 156 155 158
154 153 156 157 156 159
156 154 158 159 158 161
157 156 159 160 159 162

0 = black
255 = white

These are integer values
Type: uint8

12

Let’s put a picture in a frame

Read a grayscale jpeg file into a matrix P
P = imread(‘<filename>.jpg’);

See the image represented by P
imshow(P)

Change the “edge pixels” into the frame color
(grayscale) you want

…

13

Problem: produce a negative

14

Problem: produce a negative

“Negative” is what we say, but all color values
are positive numbers!
Think in terms of the extremes, 0 and 255. Then
the “negative” just means the opposite side.
So 0 is the opposite of 255;

1 … 254;
5 … 250;
30 … 225;
x … 255-x

CS/INFO 1305 Summer 2011

3

15

function newIm = toNegative(im)
% newIm is the negative of image im
% im, newIm are 3-d arrays; each component is uint8

[nr,nc,np]= size(im); % dimensions of im
newIm= zeros(nr,nc); % initialize newIm
newIm= uint8(newIm); % Type for image color values

for r= 1:nr
for c= 1:nc

for p= 1:np
newIm(r,c,p)= ___________________;

end
end

end

18

A color picture is made up of RGB matrices

Operations on images amount to operations on
matrices—good way to practice matrix
manipulation!

Color image 3-d Array

0 ≤ A(i,j,1) ≤ 255

0 ≤ A(i,j,3) ≤ 255

0 ≤ A(i,j,2) ≤ 255

19

Extracting subarrays and tiling

Accessing a submatrix: M(_:_ , _:_)
Accessing a subarray (3-d): P(_:_ , _:_ , :)
Concatenate horizontally: [PL PR]
Concatenate vertically: [PT; PB]

20

Your multi-media project

Create a Matlab program that involves image and
sound manipulation
You get to

Make your own design
Set the level of difficulty

Finish by 11:30am and submit in CMS

Mirror image

Set color conditionally

Sub-array

tiling

Photo negative

Manipulate sound vector and playback

21

Example: Mirror Image

LawSchool.jpg LawSchoolMirror.jpg

22

Solution Framework

1. Read LawSchool.jpg from memory and
convert it into an array.

2. Manipulate the Array.
3. Convert the array to a jpg file and write it to

memory.

CS/INFO 1305 Summer 2011

4

23

Reading and writing jpg files

% Read jpg image and convert to
% a 3D array A

A = imread('LawSchool.jpg');

% Write 3D array B to memory as
% a jpg image

imwrite(B,'LawSchoolMirror.jpg')

24

A 3-d array as 3 matrices

[nr, nc, np] = size(A) % dimensions of 3-d array A

#rows
#columns

#layers (pages)

4-by-6 M1= A(:,:,1)

4-by-6 M3= A(:,:,3)

4-by-6 M2= A(:,:,2)

26

% Make mirror image of A

[nr,nc,np]= size(A);
for r= 1:nr

for c= 1:nc
for p= 1:np

B(r,c,p)= A(r,nc-c+1,p);
end

end
end

30

% Make mirror image of A –- the whole thing

A= imread(’LawSchool.jpg’);
[nr,nc,np]= size(A);

B= zeros(nr,nc,np);
B= uint8(B); % Type for image color values

for r= 1:nr
for c= 1:nc

for p= 1:np
B(r,c,p)= A(r,nc-c+1,p);

end
end

end
image(B) % Show 3-d array data as an image
imwrite(B,’LawSchoolMirror.jpg’)

41

Vectorized code simplifies things…
Work with a whole column at a time

A B

16 25 34 6541 2 3

Column c in B
is column nc-c+1 in A

45

Vectorized code to create a mirror image

A = imread(’LawSchool.jpg’)
[nr,nc,np] = size(A);
for c= 1:nc

B(:,c,1) = A(:,nc+1-c,1)
B(:,c,2) = A(:,nc+1-c,2)
B(:,c,3) = A(:,nc+1-c,3)

end
imwrite(B,'LawSchoolMirror.jpg')

CS/INFO 1305 Summer 2011

5

47

Example: color black and white

Can “average” the three color
values to get one gray value.

48

Averaging the RGB values to get a gray value

R/3+G/3+B/3

.3R+.59G+.11B

R

G

B

49

Averaging the RGB values to get a gray value

.3R+.59G+.11B

for i= 1:m
for j= 1:n

M(i,j)= .3*R(i,j) + .59*G(i,j) + .11*B(i,j)
end

end

scalar operation

R

G

B

50

Averaging the RGB values to get a gray value

.3R+.59G+.11B

M= .3*R + .59*G + .11*B

vectorized operation

R

G

B

52

Here are 2 ways to calculate the average. Are gray value
matrices g and h the same given image data A?

for r= 1:nr
for c= 1:nc

g(r,c)= A(r,c,1)/3 + A(r,c,2)/3 ...
A(r,c,3)/3;

h(r,c)= ...
(A(r,c,1)+A(r,c,2)+A(r,c,3))/3;

end
end A: yes B: no

53

Turn the white duck yellow!

The duck’s body and the image’s background
show some contrast. However, neither the
duck’s body nor the background has a uniform
color
Are the RGB values different enough for us to
write a “rule” in the program to tell between the
duck and the background?
Check out the RGB values!

