
Debugging

Mini-Lecture 12

Testing last_name_first(n)
test procedure
def test_last_name_first():

"""Test procedure for last_name_first(n)"""
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Script code
test_last_name_first()
print('Module name is working correctly')

9/21/18 Debugging 2

Call function
on test input

Compare to
expected output

Call test procedure
to activate the test

Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done

9/21/18 Debugging 3

Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print(end_first)
first = n[:end_first]
print('first is '+str(first))
last = n[end_first+1:]
print('last is '+str(last))
return last+', '+first

9/21/18 Debugging 4

Print variable after
each assignment

Optional: Annotate
value to make it
easier to identify

Conditionals and Debugging

• Must understand which
branch caused the error
§ Unit test produces error
§ Visualization tools show

the current flow for error

• Visualization tools?
§ print statements
§ Advanced tools in IDEs

(Integrated Dev. Environ.)

Put max of x, y in z
print('before if')
if x > y:

print('if x>y')
z = x

else:
print('else x<=y')
z = y

print('after if')

9/21/18 Debugging 5

Conditionals and Debugging

• Call these tools traces

• No requirements on how
to implement your traces
§ Less print statements ok
§ Do not need to word them

exactly like we do
§ Do what ever is easiest

for you to see the flow

• Example: flow.py

Put max of x, y in z
print('before if')
if x > y:

print('if x>y')
z = x

else:
print('else x<=y')
z = y

print('after if')

9/21/18 Debugging 6

Traces

Watches vs. Traces

Watch

• Visualization tool
(e.g. print statement)

• Looks at variable value
• Often after an assignment
• What you did in lab

Trace

• Visualization tool
(e.g. print statement)

• Looks at program flow
• Before/after any point

where flow can change

9/21/18 Debugging 7

Traces and Functions

print('before if')
if x > y:

print('if x>y')
z = y
print(z)

else:
print('else x<=y')
z = y
print(z)

print('after if')
9/21/18 Debugging 8

Watches Traces

Example: flow.py

