
Mini-Lecture 2

Expressions

The Basics

Python and Expressions

- An expression represents something
 - Python evaluates it (turns it into a value)
 - Similar to what a calculator does
- Examples:
 - Literal (evaluates to self)
 - -(3*7+2)*0.1

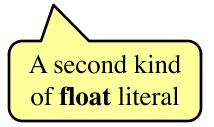
An expression with four literals and some operators

Representing Values

- Everything on a computer reduces to numbers
 - Letters represented by numbers (ASCII codes)
 - Pixel colors are three numbers (red, blue, green)
 - So how can Python tell all these numbers apart?

Type:

A set of values and the operations on them.


- Examples of operations: +, -, /, *
- The meaning of these depends on the type

Example: Type int

- Type int represents integers
 - values: ..., -3, -2, -1, 0, 1, 2, 3, 4, 5, ...
 - Integer literals look like this: 1, 45, 43028030 (no commas or periods)
 - operations: +, -, *, //, **, unary multiply to power of
- Principle: operations on int values must yield an int
 - **Example:** 1 // 2 rounds result down to 0
 - Companion operation: % (remainder)
 - 7 % 3 evaluates to 1, remainder when dividing 7 by 3
 - Operator / is not an int operation in Python 3

Example: Type float

- Type float (floating point) represents real numbers
 - values: distinguished from integers by decimal points
 - In Python a number with a "." is a **float** literal (e.g. 2.0)
 - Without a decimal a number is an **int** literal (e.g. 2)
 - operations: +, -, *, /, **, unary -
 - Notice that float has a different division operator
 - **Example**: 1.0/2.0 evaluates to 0.5
- Exponent notation is useful for large (or small) values
 - -22.51e6 is $-22.51*10^6$ or -22510000
 - **22.51e-6** is $22.51 * 10^{-6}$ or 0.00002251

Expressions

Representation Error

- Python stores floats as binary fractions
 - Integer mantissa times a power of 2
 - Example: 12.5 is $100 * 2^{-3}$

mantissa

exponent

- Impossible to write every number this way exactly
 - Similar to problem of writing 1/3 with decimals
 - Python chooses the closest binary fraction it can
- This approximation results in representation error
 - When combined in expressions, the error can get worse
 - Example: type 0.1 + 0.2 at the prompt >>>

Example: Type bool

- Type boolean or bool represents logical statements
 - values: True, False
 - Boolean literals are just True and False (have to be capitalized)
 - operations: not, and, or
 - not b: **True** if b is false and **False** if b is true
 - b and c: True if both b and c are true; False otherwise
 - b or c: True if b is true or c is true; False otherwise
- Often come from comparing int or float values
 - Order comparison: i < j i <= j i >= j i > j
 - Equality, inequality: i == j i != j

"=" means something else!

Example: Type str

- Type String or str represents text
 - values: any sequence of characters
 - operation(s): + (catenation, or concatenation)
- String literal: sequence of characters in quotes
 - Double quotes: "abcex3\$g<&" or "Hello World!"</p>
 - Single quotes: 'Hello World!'
- Concatenation can only apply to strings.
 - 'ab' + 'cd' evaluates to 'abcd'
 - 'ab' + 2 produces an error

Example: Type str

- Type String or str represents text
 - values: any sequence of characters
 - operation(s): + (catenation, or concatenation)
- String literal: sequence of characters in quotes
 - Double quotes: "abcex3\$g<&" or "Hello World!"</p>
 - Single quotes: 'Hello World!'
- Concatenation can only apply to strings.
 - 'ab' + 'cd' evaluates to 'abcd'
 - 'ab' + 2 produces an error

The meaning of + depends on the **type**

Summary of Basic Types

- Type int:
 - Values: integers
 - **Ops**: +, -, *, //, %, **
- Type **float**:
 - Values: real numbers
 - **Ops**: +, -, *, /, **
- Type **bool**:
 - Values: True and False
 - Ops: not, and, or

- Type str:
 - Values: string literals
 - Double quotes: "abc"
 - Single quotes: 'abc'
 - Ops: + (concatenation)

Will see more types later in semester