
Course Overview,
Python Basics

Lecture 1

CS 1133 Spring 2018: Craig Frey

• Outcomes:
§ Competency with basic Python programming

• Ability to create Python modules and programs
• Ability to use the most common built-in data

types
§ Knowledge of object-oriented programming

• Ability to recognize and use objects in Python.
• Ability to understand classes written by others.

• Website:
§ www.cs.cornell.edu/courses/cs1133/2018sp/

28/25/17 Overview, Types & Assignment

About Your Instructor

8/25/17 Overview, Types & Assignment 3

• Teaches
 CS 2024 C++ Programming
 CS 2049 Int iPhone Development
 CS 1130 Transition to Object Oriented Programming

• Developer for facilities
 Utilities billing / $5 million / month

Class Structure

• Lectures. Every Monday/Friday
§ Similar to lectures in CS 1110
§ Some interactive demos; bring laptops

• Labs. Every Wednesday
§ Self-guided activities to give practice
§ Several instructors on hand to help out

• Consulting Hours: 4:30-9:30, Sunday-Thursday
§ Open office hours with (CS 1110) staff
§ Open to CS 1133 students as well
§ Held in ACCEL Labs, Carpenter Hall

48/25/17 Overview, Types & Assignment

Grading Policy

• There will be two assignments
• Course is not long enough to do much more
• But both will involve programming

• Must earn 85% to pass an assignment
• Get two more attempts if you fail
• But you must meet the posted deadlines!

• Must pass both assignments
• No exams; labs are not graded
8/25/17 Overview, Types & Assignment 5

Getting Started with Python

• Designed to be used from
the “command line”
§ OS X/Linux: Terminal
§ Windows: Command Prompt
§ Purpose of the first lab

• Once installed type “python”
§ Starts an interactive shell
§ Type commands at >>>
§ Shell responds to commands

• Can use it like a calculator
§ Use to evaluate expressions

8/25/17 Overview, Types & Assignment 6

This class uses Python 3.6

The Basics

8/25/17 Overview, Types & Assignment 7

12.345

42

“Hello!”
integer

Values

Types

Expressions

float (real number)

string (of characters)
34 * (23 + 14)

"Hel" + "lo!"

1.0 / 3.0

Python and Expressions

8/25/17 Overview, Types & Assignment 8

• An expression represents something
§ Python evaluates it (turns it into a value)
§ Similar to what a calculator does

• Examples:
§ 2.3

§ (3 * 7 + 2) * 0.1

Literal
(evaluates to self)

An expression with four
literals and some operators

Representing Values

• Everything on a computer reduces to numbers
§ Letters represented by numbers (ASCII codes)
§ Pixel colors are three numbers (red, blue, green)
§ So how can Python tell all these numbers apart?

• Type:
A set of values and the operations on them.
§ Examples of operations: +, -, /, *
§ The meaning of these depends on the type

8/25/17 Overview, Types & Assignment 9

Example: Type int

• Type int represents integers
§ values: …, –3, –2, –1, 0, 1, 2, 3, 4, 5, …

• Integer literals look like this: 1, 45, 43028030 (no commas or periods)

§ operations: +, –, *, //, **, unary –

• Principle: operations on int values must yield an int
§ Example: 1 // 2 rounds result down to 0

• Companion operation: % (remainder)

• 7 % 3 evaluates to 1, remainder when dividing 7 by 3

§ Operator / is not an int operation in Python 3

multiply to power of

8/25/17 Overview, Types & Assignment 10

Example: Type float

• Type float (floating point) represents real numbers
§ values: distinguished from integers by decimal points

• In Python a number with a “.” is a float literal (e.g. 2.0)
• Without a decimal a number is an int literal (e.g. 2)

§ operations: +, –, *, /, **, unary –
• Notice that float has a different division operator
• Example: 1.0/2.0 evaluates to 0.5

• Exponent notation is useful for large (or small) values
§ –22.51e6 is –22.51 * 106 or –22510000
§ 22.51e–6 is 22.51 * 10–6 or 0.00002251

A second kind
of float literal8/25/17 Overview, Types & Assignment 11

Representation Error

• Python stores floats as binary fractions
§ Integer mantissa times a power of 2
§ Example: 12.5 is 100 * 2-3

• Impossible to write every number this way exactly
§ Similar to problem of writing 1/3 with decimals
§ Python chooses the closest binary fraction it can

• This approximation results in representation error
§ When combined in expressions, the error can get worse
§ Example: type 0.1 + 0.2 at the prompt >>>

8/25/17 Overview, Types & Assignment 12

mantissa exponent

Example: Type bool

• Type boolean or bool represents logical statements
§ values: True, False

• Boolean literals are just True and False (have to be capitalized)
§ operations: not, and, or

• not b: True if b is false and False if b is true
• b and c: True if both b and c are true; False otherwise
• b or c: True if b is true or c is true; False otherwise

• Often come from comparing int or float values
§ Order comparison: i < j i <= j i >= j i > j
§ Equality, inequality: i == j i != j

"=" means something else!
8/25/17 Overview, Types & Assignment 13

Example: Type str

• Type String or str represents text
§ values: any sequence of characters
§ operation(s): + (catenation, or concatenation)

• String literal: sequence of characters in quotes
§ Double quotes: " abcex3$g<&" or "Hello World!"
§ Single quotes: 'Hello World!'

• Concatenation can only apply to strings.
§ 'ab' + 'cd' evaluates to 'abcd'
§ 'ab' + 2 produces an error

8/25/17 Overview, Types & Assignment 14

Example: Type str

• Type String or str represents text
§ values: any sequence of characters
§ operation(s): + (catenation, or concatenation)

• String literal: sequence of characters in quotes
§ Double quotes: " abcex3$g<&" or "Hello World!"
§ Single quotes: 'Hello World!'

• Concatenation can only apply to strings.
§ 'ab' + 'cd' evaluates to 'abcd'
§ 'ab' + 2 produces an error

8/25/17 Overview, Types & Assignment 15

The meaning of +
depends on the type

Summary of Basic Types

• Type int:
§ Values: integers
§ Ops: +, –, *, //, %, **

• Type float:
§ Values: real numbers
§ Ops: +, –, *, /, **

• Type bool:
§ Values: True and False
§ Ops: not, and, or

• Type str:
§ Values: string literals

• Double quotes: "abc"
• Single quotes: 'abc'

§ Ops: + (concatenation)

8/25/17 Overview, Types & Assignment 16

Will see more types
in the next week

Converting Values Between Types

• Basic form: type(value)
§ float(2) converts value 2 to type float (value now 2.0)
§ int(2.6) converts value 2.6 to type int (value now 2)
§ Explicit conversion is also called “casting”

• Narrow to wide: bool⇒ int⇒ float
• Widening. Python does automatically if needed

§ Example: 1/2.0 evaluates to 0.5 (casts 1 to float)
• Narrowing. Python never does this automatically

§ Narrowing conversions cause information to be lost
§ Example: float(int(2.6)) evaluates to 2.0

8/25/17 Overview, Types & Assignment 17

Operator Precedence

• What is the difference between the following?
§ 2*(1+3)
§ 2*1 + 3

• Operations are performed in a set order
§ Parentheses make the order explicit
§ What happens when there are no parentheses?

• Operator Precedence: The fixed order Python
processes operators in absence of parentheses

8/25/17 Overview, Types & Assignment 18

add, then multiply

multiply, then add

Precedence of Python Operators
• Exponentiation: **

• Unary operators: + –

• Binary arithmetic: * / %

• Binary arithmetic: + –

• Comparisons: < > <= >=

• Equality relations: == !=

• Logical not

• Logical and

• Logical or

• Precedence goes downwards
§ Parentheses highest
§ Logical ops lowest

• Same line = same precedence
§ Read “ties” left to right
§ Example: 1/2*3 is (1/2)*3

8/25/17 Overview, Types & Assignment 19

• Section 2.7 in your text
• See website for more info
• Major portion of Lab 1

Expressions vs Statements

Expression

• Represents something
§ Python evaluates it
§ End result is a value

• Examples:
§ 2.3
§ (3+5)/4

Statement

• Does something
§ Python executes it
§ Need not result in a value

• Examples:
§ print('Hello')
§ import sys

8/25/17 Overview, Types & Assignment 20

Will see later this is not a clear cut separation

Literal

Complex Expression

Variables (Section 2.1)

• A variable is
§ a named memory location (box),
§ a value (in the box)

• Examples

• Variable names must start with a letter
§ So 1e2 is a float, but e2 is a variable name

8/25/17 Overview, Types & Assignment 21

5x Variable x, with value 5 (of type int)

20.1area Variable area, w/ value 20.1 (of type float)

Variables and Assignment Statements
• Variables are created by assignment statements

§ Create a new variable name and give it a value

x = 3

• This is a statement, not an expression
§ Tells the computer to DO something (not give a value)
§ Typing it into >>> gets no response (but it is working)

• Assignment statements can have expressions in them
§ These expressions can even have variables in them

x = x + 2

8/25/17 Overview, Types & Assignment 22

the value

the variable

the expression

the variable

Dynamic Typing

• Python is a dynamically typed language
§ Variables can hold values of any type
§ Variables can hold different types at different times
§ Use type(x) to find out the type of the value in x
§ Use names of types for conversion, comparison

• The following is acceptable in Python:
>>> x = 1
>>> x = x / 2.0

• Alternative is a statically typed language (e.g. Java)
§ Each variable restricted to values of just one type

ç x contains an int value
ç x now contains a float value

type(x) == int
x = float(x)
type(x) == float

8/25/17 Overview, Types & Assignment 23

Dynamic Typing

• Often want to track the type in a variable
§ What is the result of evaluating x / y?
§ Depends on whether x, y are int or float values

• Use expression type(<expression>) to get type
§ type(2) evaluates to <type 'int'>
§ type(x) evaluates to type of contents of x

• Can use in a boolean expression to test type
§ type('abc') == str evaluates to True

8/25/17 Overview, Types & Assignment 24

