Lecture 1

Course Overview,
Python Basics

CS 1133 Spring 2018: Craig Frey

e Outcomes:

* Competency with basic Python programming
e Ability to create Python modules and programs
 Ability to use the most common built-in data

types

= Knowledge of object-oriented programming
e Ability to recognize and use objects in Python.
 Ability to understand classes written by others.

e Website:

= www.cs.cornell.edu/courses/cs1133/2018sp/

8/25/17 Overview, Types & Assignment

About Your Instructor

e Teaches

= CS 2024 C++ Programming

= CS 2049 Int iPhone Development

= CS 1130 Transition to Object Oriented Programming
* Developer for facilities

= Utilities billing / $5 million / month

8/25/17 Overview, Types & Assignment

Class Structure

* Lectures. Every Monday/Friday

= Similar to lectures in CS 1110

= Some interactive demos; bring laptops
 Labs. Every Wednesday

= Self-guided activities to give practice

= Several instructors on hand to help out

* Consulting Hours: 4:30-9:30, Sunday-Thursday
= Open office hours with (CS 1110) staft
= Open to CS 1133 students as well
= Held in ACCEL Labs, Carpenter Hall

8/25/17 Overview, Types & Assignment

Grading Policy

* There will be two assignments

e Course 1s not long enough to do much more

e But both will involve programming

* Must earn 85% to pass an assignment
e Get two more attempts 1f you fail

e But you must meet the posted deadlines!

e Must pass both assignments

* No exams; labs are not graded

8/25/17 Overview, Types & Assignment

Getting Started with Python

. 00 wmwhi
* Designed to be l.]’sed from Last login: Mon Aug 14 22:16:16 on tt
the “command line” [wmwhite@Rlyeh]:~ > python
: . . Python 3.6.1 |Anaconda 4.4.0 (x86_64)
* OS X/Linux: Terminal [GCC 4.2.1 Compatible Apple LLVM 6.0
* Windows: Command Prompt |Type "help”, "copyright”, "credits” c
i >>> 1+2
= Purpose of the first lab 3
. 9y . >>> 'Hello'+'World'
* Once installed type “python 'HelloWorld'
>>> L

= Starts an interactive shell
= Type commands at >>>
= Shell responds to commands

e Can use 1t like a calculator [This class uses Python 3,6)

= Use to evaluate expressions

8/25/17 Overview, Types & Assignment 6

The Basics

8/25/17

integer &

float (real number) ‘P'

=

string (of characters)

Expressions

% 34 * (23 + 14)

o 10/50
X

IIHelll + "10! n

Overview, Types & Assignment

Python and Expressions

* An expression represents something
= Python evaluates it (turns it into a value)

= Similar to what a calculator does

* Examples:

= 2.8 Literal
(evaluates to self)

=(3*7+2)*0.1 ﬁ An expression with four]

literals and some operators

8/25/17 Overview, Types & Assignment

Representing Values

* Everything on a computer reduces to numbers
= Letters represented by numbers (ASCII codes)
= Pixel colors are three numbers (red, blue, green)
= So how can Python tell all these numbers apart?

e Type:
A set of values and the operations on them.
= Examples of operations: +, -, /, *

* The meaning of these depends on the type

8/25/17 Overview, Types & Assignment

Example: Type int

e Type int represents integers
= values: ..., -3, -2, -1,0, 1, 2, 3, 4,5, ...
* Integer literals look like this: 1, 45, 43028030 (no commas or periods)

= operations: +, —, *, //, ¥, unary —

multiply to power of

* Principle: operations on int values must yield an int

= Example: 1 // g rounds result down to 0

e Companion operation: % (remainder)

e 7% 3 evaluates to 1, remainder when dividing 7 by 3

= (Operator / is not an int operation in Python 3

8/25/17 Overview, Types & Assignment 10

Example: Type float

* Type float (floating point) represents real numbers

= values: distinguished from integers by decimal points

e In Python a number with a “.” is a float literal (e.g. 2.0)

e Without a decimal a number is an int literal (e.g. 2)

= operations: +, —, *, /,**, unary -
e Notice that float has a different division operator
 Example: 1.0/2.0 evaluates to 0.5

 Exponent notation is useful for large (or small) values

= —22.81e6 is -22.51 * 10° or -22510000
= 22.851le-6 is 22.51 * 10 or 0.00002251

A second kind
8/25/17 of float literal Overview, Types & Assignment

Representation Error

* Python stores floats as binary fractions
= Integer mantissa times a power of 2

= Example: 12.5 1s 100*2\

mantissa exponent
e Impossible to write every number this way exactly
= Similar to problem of writing 1/3 with decimals

= Python chooses the closest binary fraction it can

e This approximation results in representation error
* When combined in expressions, the error can get worse

= Example: type 0.1 + 0.2 at the prompt >>>

8/25/17 Overview, Types & Assignment

12

Example: Type bool

* Type boolean or bool represents logical statements

= values: True, False
* Boolean literals are just True and False (have to be capitalized)

= operations: not, and, or
e notb: Trueif bis false and False 1f b 1s true
e band c: True if both b and c are true; False otherwise
e borc: Trueifb is true or c i1s true; False otherwise

e Often come from comparing int or float values
= Order comparison: 1<] 1<=] 1>=] 1>]
= Equality, inequality: 1==3 1!=]

1 "=" means something else!
8/25/17 Overview, Types & Assignment 13

Example: Type str

e Type String or str represents text
= values: any sequence of characters
= operation(s): + (catenation, or concatenation)

e String literal: sequence of characters 1in quotes
= Double quotes: " abcex3$g<8&" or "Hello World!"
= Single quotes: 'Hello World!

* Concatenation can only apply to strings.
= 'ab' + 'ed’ evaluates to 'abed’

= 'ab' + 2 produces an error

8/25/17 Overview, Types & Assignment

14

Example: Type str

* Type String or str represents text
= values: any sequence of characters
= operation(s): + (catenation, or concatenation)
e String literal: sequence of characters 1in quotes
= Double quotes: " abcex3$g<8&" or "Hello World!"
= Single quotes: 'Hello World!

e Concatenation can only apply to strings.

= 'ab' + 'ed’ evaluates to 'abed’ THihe e g e
= 'ab' + 2 produces an error depeindly em e fpe

8/25/17 Overview, Types & Assignment

15

Summary of Basic Types

 Type int: e Type str:
= Values: integers = Values: string literals
= Ops: +,—, *, /1, %, ** * Double quotes: "abc"
o Type float: e Single quotes: 'abc’

= Values: real numbers

= Ops: +,—, *,/,**

* Type bool.:

= Ops: + (concatenation)

Will see more types

= Values: True and False 1n the next week

= Ops: not, and, or

8/25/17

Overview, Types & Assignment

16

Converting Values Between Types

e Basic form: rype(value)
= float(2) converts value 2 to type float (value now 2.0)
" int(R.6) converts value 2.6 to type int (value now 2)
= Explicit conversion 1s also called “casting”

e Narrow to wide: bool = int = float

* Widening. Python does automatically if needed
= Example: 1/2.0 evaluates to 0.5 (casts 1 to float)

* Narrowing. Python never does this automatically

= Narrowing conversions cause information to be lost
= Example: float(int(2.6)) evaluates to 2.0

8/25/17 Overview, Types & Assignment 17

Operator Precedence

* What 1s the difference between the following?
= 2F(143) add, then multiply
= 2% + 3 multiply, then add

* Operations are performed in a set order
= Parentheses make the order explicit

= What happens when there are no parentheses?

* Operator Precedence: The fixed order Python
processes operators in absence of parentheses

8/25/17 Overview, Types & Assignment

18

Precedence of Python Operators

 Exponentiation: ** * Precedence goes downwards

« Unary operators: + — = Parentheses highest

= Logical ops lowest

o o o e K
Binary arithmetic: * / % e Same line = same precedence

e Binary arithmetic: + — = Read “ties” left to right

u . *Q 1 *
« Comparisons: < > <= >= Example: 1/2*3 1s (1/2)*3

* Equality relations: == != . .
e Section 2.7 in your text

 Logical not
5 * See website for more info

* Logical and e Major portion of Lab 1

* Logical or

8/25/17 Overview, Types & Assignment 19

Expressions vs Statements

Expression Statement
* Represents something * Does something
= Python evaluates it = Python executes it
= End result 1s a value = Need not result in a value
e Examples: e Examples:
- 23 i Lienl = print(‘Hello")

- (5+5)/ 4 ﬁ Complex Expression - import SY5

[Will see later this 1s not a clear cut separation J

8/25/17 Overview, Types & Assignment 20

Variables (Section 2.1)

e A variable 1s
* a named memory location (box),

= a value (in the box)

e Examples

X |5 Variable x, with value 5 (of type int)

area | 20.1 Variable area, w/ value 20.1 (of type float)

e Variable names must start with a letter

= So le2 1s a float, but e2 1s a variable name

8/25/17 Overview, Types & Assignment 21

Variables and Assignment Statements

e Variables are created by assignment statements

= Create a new variable name and give it a value
- the value
X =73
T the variable

e This 1s a statement, not an expression

= Tells the computer to DO something (not give a value)
= Typing it into >>> gets no response (but it 1s working)

e Assignment statements can have expressions in them

= These expressions can even have variables in them

I the expression
X+ 2

X =
L= the variable

8/25/17 Overview, Types & Assignment

22

Dynamic Typing

* Python is a dynamically typed language
= Variables can hold values of any type
= Variables can hold different types at different times
= Use type(x) to find out the type of the value in x

\

= Use names of types for conversion, comparison typef(X) =(=)int
x = float(x
e The following 1s acceptable 1in Python: type(x) == float
J/

>>>x =1 € x contains an int value
>>>x=x/2.0 € x now contains a float value

e Alternative is a statically typed language (e.g. Java)

= Each variable restricted to values of just one type

8/25/17 Overview, Types & Assignment 23

Dynamic Typing

* Often want to track the type in a variable
= What is the result of evaluating x / y?
= Depends on whether x, y are int or float values

* Use expression type(<expression>) to get type
= type(R) evaluates to <type 'int™>

= {ype(X) evaluates to type of contents of x

e Can use 1n a boolean expression to test type

= fype('abe’) == str evaluates to True

8/25/17 Overview, Types & Assignment

24

