Announcements

• A2 resubmissions due today
• A3 released; due Oct 18
• Next (and last) lab: A3 work session
• E-mail me to schedule retest

Today’s topic: image processing
• Image functions
• Type uint8
• 3D arrays
• Filtering
Arrays: What we didn’t tell you

\[
\begin{bmatrix}
2 & 3 & 5 & 7 \\
-2 & 1 & 0 & 7 \\
5 & 2 & -1 & 8
\end{bmatrix}
\]

\[L = m > 3 \]
\[
\begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{bmatrix}
\]

\[P = m > 3 \mid m < 0 \]
\[
\begin{bmatrix}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1
\end{bmatrix}
\]

\[a = m (m > 3) \]
\[
\begin{bmatrix}
5 & 5 & 7 & 7 & 8
\end{bmatrix}
\]

\[b = (m > 3) .* m \]
\[
\begin{bmatrix}
2 & 3 & 5 & 7 \\
-2 & 1 & 0 & 7 \\
5 & 2 & -1 & 8
\end{bmatrix}
\]
Column-major storage

\[
m = \begin{bmatrix}
 2 & 3 & 5 & 7 \\
 -2 & 1 & 0 & 7 \\
 5 & 2 & -1 & 8
\end{bmatrix}
\]

\[m(5) \quad \text{% Linear index} \]
\[1\]

\[v = m(:) \quad \text{% Convert to vec} \]
\[
[2; -2; 5; 3; 1; 2; 5; 0; -1; 7; 7; 8]
\]

% Recover matrix
\[mm = \text{reshape}(v, 3, 4);
\]

% Reductions act on columns
\[c_{\text{max}} = \text{max}(m)\]
\[
[5 \ 3 \ 5 \ 8]
\]
Permutation indexing

- **Logical indexing:** $a = v(p)$
 - $p(i) \in \{\text{false, true}\}$
 - $\text{length}(p) == \text{length}(v)$
 - $\text{length}(a) == \text{sum}(p)$

- **Vector indexing:** $a = v(x)$
 - $x(i) \in 1:\text{length}(v)$
 - $\text{length}(a) == \text{length}(x)$

- **Permutation**
 - $\text{length}(x) == \text{length}(v)$
 - $x(i)$ are unique

- **Shuffling**
 - $x = 2*(1:5);$
 - $y = \text{randperm(length}(x))$
 - $\begin{bmatrix}2 & 4 & 5 & 3 & 1\end{bmatrix}$
 - $z = x(y)$
 - $\begin{bmatrix}4 & 8 & 10 & 6 & 2\end{bmatrix}$

- **Sorting**
 - $[w, p] = \text{sort}(z)$
 - $\begin{bmatrix}2 & 4 & 6 & 8 & 10\end{bmatrix}$
 - $\begin{bmatrix}5 & 1 & 4 & 2 & 3\end{bmatrix}$
 - $w == z(p) == x$
Searching

• Is x in v? If so, where?
 • Need to check every element of v
 • Vectorized assistant: `find`

```plaintext
ids = [89, 4, 782];
names = {'Curran', ...
  'Aravind', ...
  'Clive'};
```

```plaintext
names{find(ids == 4)}
```

• What if v is sorted?
 • Can eliminate half of v without looking at its contents: “binary search”
 • Repetitions needed to check whole array: \(\log_2(\text{length}(v)) \)
 • Even if v has 1000 sorted elements, searching takes only 10 steps

• **Recommendation:** If doing lots of searches, or if data is naturally sorted, avoid `find`, linear search
New topic: `uint8` and image processing
Pictures as matrices

24 29 30 28 26
124 72 34 27 26
236 212 142 65 32
231 232 232 198 130
231 228 224 225 215

"512 x 384" image ⇒ 384 x 512 array
Image files & raster data

File formats
- JPEG: Photographs, lossy
- PNG: Graphics, lossless
- TIFF: Technical

Others
- WebP, GIF, DNG, OpenEXR, ...

Properties
- Channels
 - RGB(A), YCbCr
- Bit depth, range
 - 8-bit, 10-bit, HDR
- Color space, “gamma”
 - sRGB, DCI-P3, raw
- Subsampling
 - 4:4:4, 4:2:0
MATLAB features

- % Read image file into matrix
 mat = imread('filename')
- % Plot matrix as image
 imshow(mat)
- % Write matrix to image file
 imwrite(mat, 'filename')

New type: uint8
- Integer value between 0 and 255
 - 0=dark, 255=bright
- Can only operate with other uint8 vars, or scalar doubles
- Semantics: rounding and saturation (different from most other languages)
- Conversion: \(y = \text{uint8}(x) \)
Example: Draw crosshairs

Objective
• User clicks on image
• Draw horizontal and vertical lines through clicked point
 • Lines replace image pixels

Tools
• ginput(n)
• uint8 assignment
• For-loops, slice assignment