Today’s topics

- Review of topics for Test 1
 - Lecture up to and including Lecture 8 (9/24)
 - Exercises up to and including Lab 4 (9/22)
 - Assignments 1 and 2
 - But nothing on type `char`, `logical` indexing

Announcements/Reminders:

- Test 1 on Wednesday, 09/29. Time is from 14:40-15:30, 205, Thurston
- Assignment 2 due tonight 11:59pm. Submit it tonight—don’t incur the late penalty! After grading we will re-open A2 submission in CMS.
The *if* construct

```plaintext
if  boolean expression1
    statements to execute if  expression1  is true
elseif  boolean expression2
    statements to execute if  expression1  is false
    but  expression2  is true
:
else
    statements to execute if all previous conditions are false
end
```

Can have any number of elseif branches but at most one else branch
Generating random numbers

- \texttt{rand(m,n)} gives an m-by-n matrix of random values, each in interval (0,1)

- Generate a random number in the range (a,b)

- Generate a random integer in the range [a,b]
Built-in functions for creating/manipulating arrays

- Creation
 - zeros, ones, rand
 - linspace
 - Colon expression

- Manipulation
 - length
 - size
 - Concatenation
Common loop patterns

Do something \(n \) times

\begin{verbatim}
for k = 1:1:n
 % Do something
end
\end{verbatim}

Do something an indefinite number of times

\begin{verbatim}
% Initialize loop variables
while (not stopping signal)
 % Do something
 % Update loop variables
end
\end{verbatim}
for loop examples

\begin{verbatim}
for k= 2:0.5:3
 disp(k)
end
\end{verbatim}

\textit{k} takes on the values 2, 2.5, 3
Non-integer increment is OK

\begin{verbatim}
for k= 1:4
 disp(k)
end
\end{verbatim}

\textit{k} takes on the values 1, 2, 3, 4
Default increment is 1

\begin{verbatim}
for k= 0:-2:-6
 disp(k)
end
\end{verbatim}

\textit{k} takes on the values 0, -2, -4, -6
"Increment" may be negative

\begin{verbatim}
for k= 0:-2:-7
 disp(k)
end
\end{verbatim}

\textit{k} takes on the values 0, -2, -4, -6
Colon expression specifies a \textit{bound}

\begin{verbatim}
for k= 5:2:1
 disp(k)
end
\end{verbatim}

The set of values for \textit{k} is the empty set: the loop body won't execute
for k = 4:6
 disp(k)
k= 9;
disp(k)
end

Not a condition (boolean expression) that checks whether k<=6.
It is an expression that specifies values:

\[
\begin{array}{c}
4 \\
5 \\
6 \\
\end{array}
\]
Example

- Write a function `evalPoly` to evaluate an n^{th} order polynomial of x:

 $$a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$$

- Input parameter `coef` has length $n+1$, contains the coefficients of the polynomial.
- `coef(1)` is the coefficient for the term x^0.
- Input parameter `x`.
- Return the value of the polynomial evaluated at x.
- No Matlab predefined function other than `length`.
Simulation problem:

- Ann and Bob take turns flipping an unfair coin—twice as likely to be heads than tails.
- In one round, each player flips once.
- Ann gets 1 point if she gets heads; Bob gets 2 points if he gets tails.
- Game ends after the round in which at least one player gets 10 points. Display the final scores.
Simulation problem:

- Ann and Bob take turns flipping an unfair coin—twice as likely to be heads than tails.
- In one round, each player flips once.
- Ann gets 1 point if she gets heads; Bob gets 2 points if he gets tails.
- Game ends after the round in which at least one player gets 10 points. Display the final scores.

```plaintext
pA = 0;  pB = 0;
while pA < 10 & pB < 10
  // 1 round: Ann flips; Bob flips
  r = rand;
  if r < 2/3
    pA = pA + 1;
  end
  r = rand;
  if r >= 2/3
    pB = pB + 2;
  end
end
```

Stop: pA >= 10 or pB >= 10
Write a function triSums to return the column sums of the largest lower left triangular part of matrix M (same number of elements on each side of the triangle; including the main diagonal if matrix is square)
Write a function `triSums` to return the column sums of the largest lower left triangular part of matrix \(M \) (same number of elements on each side of the triangle; including the main diagonal if matrix is square)

```matlab
function colSum = triSums(M)

[nr, nc] = size(M);

minDimension = min(nr, nc);
d = nr - minDimension;
colSum = zeros(1, minDimension);

for c = 1 : minDimension
    s = 0;
    for r = d + c : nr
        s = s + M(r, c);
    end
    colSum(c) = s;
end
```
Function header is the “contract” for how the function will be used (called)

You have this function:

```matlab
function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r, theta) to
% Cartesian coordinates (x,y). Theta in degrees.
...
```

Code to call the above function:

```matlab
% Convert polar (r1,t1) to Cartesian (x1,y1)
rl = 1;  t1 = 30;
[x1, y1] = polar2xy(rl, t1);
plot(x1, y1, 'b*')
...
```
Other notes for the test (course)

- Read questions/instructions carefully
- Use Matlab syntax
- Do not use `break`, `continue`, `return`
 - In general don’t use functions/commands not covered in the course
- Use `randi`, `rand` (and other functions) only as specified in the questions
- Many students make “index out-of-bounds” error