CS 1132 lecture 3

I. Printing with printf()
 a. First argument is format string, subsequent arguments are substitution values
 b. Right-aligned within total number of columns – good for tables
 c. Fixed-point: absolute precision
 d. Floating-point (scientific notation): relative precision (sig-figs)
 e. Must explicitly request end of line with ‘\n’
 f. To capture full precision of double values, must use %.17e (or %.17g)

II. Relational operators
 a. Cannot write “in between” relations – each operation evaluates to 0 or 1

III. Logical operators
 a. Short-circuit behavior
 b. Avoid evaluating expensive, invalid expressions

IV. Visualization for Monte Carlo estimator
 a. plot() syntax
 b. “hold on”: Overlay subsequent plots
 c. “axis equal”: Preserve geometry (consider if x and y have same units)
 d. Demo

V. Example: estimate pi via annulus
 a. Relate area ratio to pi
 b. Compound condition for “hit”

VI. while-loop
 a. Indefinite iteration
 b. Does not include counter
 c. Can do anything a for-loop can
 d. Loop patterns
 i. Repeat N times
 ii. Repeat until stopping signal

VII. Vectors
 a. All variables in MATLAB store matrices
 b. Indexing
i. Starts at 1
ii. Ends with length(v) (or keyword “end”)
iii. Syntax: parentheses
c. Creating
 i. zeros(), ones(), rand()
 ii. linspace()
 iii. Range expression
 iv. Literals (square brackets)
 1. Spaces, commas separate columns (create row-vectors)
 2. Semicolons separate rows (create column-vectors)

VIII. Example: Cumulative sum

```matlab
function csum = cumulativeSum(v)

% csum is the vector of cumulative sums of vector v.
% Assume v is not empty.
```

IX. Plotting vectors
 a. Can plot lines
 b. Can plot many points without “hold on” (and will be faster)