CS 1132 lecture 1

I. Motivation
 a. Quickly get up-to-speed with Matlab programming environment
 i. Already know another language
 ii. Grad student who needs to learn technical computing before doing research
 b. Example of utility: visually check work
 i. Demo: 4-bar linkage

II. Instructor
 a. Physicist
 b. LIGO (simulation, visualization)
 c. SpaceX (engineers design autonomous systems)

III. Topics, goals
 a. Translate a problem’s solution into an algorithm
 i. Algorithm: unambiguous, step-by-step procedure for doing something
 b. Implement algorithms in Matlab syntax
 c. Visualize data and simulations
 d. Poll: students’ goals
 e. Topics
 i. Matlab environment, built-in functions
 ii. Arrays (vector, matrix)
 iii. Vectorized computation
 iv. Control flow (if/else, loops)
 v. User-defined functions
 vi. Strings and cell arrays
 vii. Graphics
 viii. Input/output (files)
 f. Programming fundamentals (requires practice)
 i. Top-down design
 ii. Modular development (to reduce redundancy)
 iii. Useful documentation
 1. Distinguish “what” from “how”
 iv. Thorough testing
 1. How can you be confident in your results when no one can give you the “right answer”?

IV. Syllabus
 a. Learning components
 i. Read textbook, watch videos, complete activities
 ii. Attend lectures (7 wks), take notes, participate
 iii. Attend lab, complete lab exercises
 iv. Complete programming assignments
 v. Ask questions in office and consulting hours, or on discussion board
 b. Assessment
 i. Feedback loop to improve learning
c. Assignments
 i. Resubmission allowed after feedback returned
 ii. Late submissions (within 24 hr) penalized

d. Test
 i. May replace with a second test

e. “S” requires mastery of material (course score above 85%)
f. Alternatives
 i. CS 1112: more beginner-friendly at start

g. Academic integrity
 i. End product isn’t valuable; experience producing it is

V. Demo
 a. Course website
 b. Matlab interface
 i. Command window
 ii. Workspace window
 iii. Files window
 c. Built-in functions
 d. Variables
 e. Example script

VI. Script input, output
 a. Most computation follows pattern: gather inputs, perform calculations, produce outputs
 b. input() function
 c. Prompt in single quotes
 d. Assign result to variable
 e. disp() function

VII. Example: change in sphere area

```matlab
radius= input('Enter radius [mi]: '); 

area= 4*pi*r^2; 

disp('Surface area [mi^2]: ') 
disp(area)
```
VIII. Program development tips
 a. Know what is given (inputs, assumptions)
 b. Be goal-oriented
 i. Write final output statements
 ii. Work backwards
 c. If you don’t have a value you need, make up a name for it
 i. Work backwards to compute its value
 ii. Helps break down steps