
CS1132 Fall 2011 Assignment 1

Adhere to the Code of Academic Integrity. You may discuss background issues and general strategies

with others and seek help from course staff, but the implementations that you submit must be your own.

In particular, you may discuss general ideas with others but you may not work out the detailed solutions

with others. It is never OK for you to see or hear another student’s code and it is never OK to copy code

from published/Internet sources. If you feel that you cannot complete the assignment on your own, seek

help from the course staff.

When submitting your assignment, follow the instructions summarized in Section 4 of this document.

Do not use the break or return statement in any homework or test in CS1132.

1 Population Dynamics

(The following description is taken from Chapter 8.1 of ”Mathematical Models in Population Biology and
Epidemiology” by Brauer and Catillo-Chavez, 2001.)

Consider a population that is divided into a finite number of age classes labeled from 0 to m. One method
of describing the number of members in each age class as a function of time is by using a linear discrete-time
model for population growth. In such a model, we let αj,n denote the number of members in the j’th class
at the n’th time. We assume that the length of time spent in each age class is the same. Then αj,n+1,
the number of members in the j’th age class at the (n + 1)st time, is equal to αj−1,n minus the number of
members of this age cohort who die before entering the next age class. We assume that the probability of
survival from one age class to the next depends only on age. Let pj be the probability that a member of the
j’th age class survives until the (j + 1)st age class.

All new members recruited into the population are assumed to come from a birth process, with fecundity
depending only on age. Assume that there are constants β0, β1, . . . , βm such that

α0,n+1 = β0α0,n + β1α1,n + · · · + βmαm,n.

If we define

~αn =


α0,n

α1,n

...
αm,n


and define the Leslie matrix to be

A =


β0 β1 β2 . . . βm−1 βm
p0 0 0 . . . 0 0
0 p1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . pm−1 0


then the change in the population through time can be described by the vector difference equation

~αn+1 = A~αn

. In the above equation, A~αn is the multiplication of a matrix and a vector, which results in a vector. This
operation will be explained below. Let Pn be equal to the total population at time n. Then the vector

~αn
Pn

gives the fraction of the population in each age class at time n.
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Goal: To write a script simulatePopulation that simulates a population according to a given Leslie
matrix and initial population. The simulation has these steps:

1. Define a function A = getLeslieMatrix(m) that takes as input an integer m and returns an (m+1)×
(m+ 1) Leslie matrix with values on the first subdiagonal linearly spaced between [0.9, 0.1] and zeros
everywhere else (hint: type in the MATLAB Command Window help diag and help linspace).
These are the survival probabilities. Next, replace the first row of the matrix with a row vector of
random integers between [1,5] (hint: use the MATLAB built-in function randi; use the help command
again for an explanation of this function). For example, A = getLeslieMatrix(5) might return

A =

1 5 4 2 1 1
0.9 0 0 0 0 0
0 0.7 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.3 0 0
0 0 0 0 0.1 0

2. Write a function w = matrixVectorMult(L,v), where L is an m × m matrix of numbers and v is
a vector of numbers of length m. The output w will be a numeric column vector such that w(i) =

L(i,1)*v(1) + L(i,2)*v(2) + ... + L(i,m)*v(m). Use SCALAR multiplication operations only,
i.e. do not use MATLAB’s matrix (vector) multiplication facility.

3. Write the script simulatePopulation that simulates a population with age-classes 0, 1, . . . , 10 (i.e.
m = 10) for 50 time steps, where the initial population size is 5 individuals in age-class zero. Use
your getLeslieMatrix function to generate your Leslie matrix for this population. At each time
step, use your matrixVectorMult function to compute the new population vector, and record the
fractions of the population in each age-class, i.e. record the vector ~αn

Pn
(hint: you may want to use

vector concatenation). Plot the fractions of all ten age-classes through time on the same figure. Add a
descriptive title to your plot and label the x-axis as time and the y-axis as Fraction in each age class.

2 Success-Run Chain

Imagine that you are playing a simple game with m levels, or states. At each level you flip a coin, and if the
coin comes up “heads” then you advance to the next level. If, however, the coin comes up “tails”, you must
go back to the first level and start over. Now imagine that each coin has a different probability of coming
up “heads” (in mathematics, this type of random process is called a success-run chain). If you were to play
this game for an arbitrary length of time, what is the probability that you will be in each of the states?

We can formulate this question more mathematically as follows: let P be an m × m matrix where the
(i, j)th element of P indicates the probability of going to i from j. For example, if the element in the first
row, third column of P is equal to 0.4, this indicates that the probability of going to level 1 from level 3 is
0.4, i.e. the probability of getting a tails in level 3 is 0.4.

Let vn be a vector of length m, in which the i’th element (where i is between 1 and m) is the probability
of being in state i at time n. Multiplying the vector vn by the matrix P gives the new vector vn+1, which is
the probability of being in each state at time (n+ 1). Thus, if we wanted to find the long-term probability
of being in each state, we would compute vN for very large N . However, there is a second method we could
use to compute the long-term probability distribution: we could simulate hundreds of thousands of trials of
the game in which virtual “coins” are flipped according to the probabilities at each state. Each trial would
run for some arbitrary number of time steps, and at the end of each trial we record the last state of the
player and start a new trial. Amazingly, the empirical distribution of states that emerges from this second
method is very close to the computed distribution of states from the first method!
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Goal: To write a function successRunChain() that demonstrates that the two methods described above
(for finding the long-term probability of being in each state) are equivalent. Note: all subfunctions
written for this question must be included in successRunChain.m

1. Write a subfunction P = getStochMatrix(m) that takes as input an integer m and returns an m×m
stochastic matrix in which the first (m − 1) elements of the top row are random numbers between
(0,1) and the m’th element is equal to 1 (hint: use the MATLAB built-in function rand). On the
first subdiagonal place the complementary values, so that each column sums to 1. For example, P =

getStochmatrix(5) might return

P =

0.3 0.5 0.4 0.2 1
0.7 0 0 0 0
0 0.5 0 0 0
0 0 0.6 0 0
0 0 0 0.8 0

2. Write a subfunction v = simulateCoinsErr(P) that takes as input a stochastic matrix P , and sim-
ulates the success-run chain by repeatedly multiplying the probability distribution by P , using your
matrixVectorMult function from Question 1 of this assignment. Initialize the probability distribution
v0 so that the probability of being in state 1 is 1. Run the simulation until either 1000 time steps have
been taken, or the probability distribution has stabilized such that the change in the distribution from
one time step to the next is less than the maximum error of 1 × 10−5. This second condition can be
checked by subtracting the current probability distribution vector from the previous one, taking the
absolute value of the vector, and finding the maximum of this vector (hint: use the built-in MATLAB
functions abs and max). If this value, called the error, is less than the maximum error, then we say
that the distribution is stationary. Return this stationary distribution as v.

3. Write a subfunction w = simulateCoinsFlips(P) that takes as input a stochastic matrix P , and
simulates the success-run chain by actually performing virtual “coin” flips. Simulate 1× 106 trials and
take 100 steps per trial. Keep track of the state in which each trial ends, and at the end of all 1 × 106

trials, return the empirical distribution of states as w (note: remember that a probability distribution
must sum to one!).

4. In the function successRunChain() set the number of levels (states) to be 10, generate a stochastic
matrix using getStochMatrix, and compute the probability distributions using simulateCoinsErr

and simulateCoinsFlips. Compute the error between these two distributions and print this value to
the Command Window (hint: use the built-in MATLAB function fprintf).

3 Self-check list

The following is a list of the minimum necessary criteria that your assignment must meet in order to be
considered satisfactory. Failure to satisfy any of these conditions will result in an immediate request to
resubmit your assignment. Save yourself and the graders time and effort by going over it before submitting
your assignment for the first time.
Note that, although all of these are necessary, meeting all of them might still not be sufficient to consider
your submission satisfactory. We cannot list everything that could be possibly wrong with any particular
assignment!

∆ Comment your code! If any of your functions is not properly commented, regarding function purpose
and input/output arguments, you will be asked to resubmit.

∆ Suppress all unnecessary output by placing semicolons (;) appropriately. At the same time, make sure
that all output that your program intentionally produces is formatted in a user-friendly way.

∆ Make sure your functions names are exactly the ones we have specified, including case.
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∆ Check that the number and order of input and output arguments for each of the functions matches
exactly the specifications we have given.

∆ Test each one of your functions independently, whenever possible, or write short scripts to test them.

∆ Check that your scripts do not crash (i.e., end unexpectedly with an error message) or run into infinite
loops. Check this by running each script several times in a row. Before each test run, you should type
the commands clear all; close all; to delete all variables in the workspace and close all figure
windows.

4 Submission instructions

1. Upload files getLeslieMatrix.m, matrixVectorMult.m, simulatePopulation.m and successRunChain.m

to CMS in the submission area corresponding to Assignment 1 in CMS.

2. Please do not make another submission until you have received and read the grader’s comments.

3. Wait for the grader’s comments and be patient.

4. Read the grader’s comments carefully and think for a while.

5. If you are asked to resubmit, fix all the problems and go back to Step 1! Otherwise you are done with
this assignment. Well done!
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