
Type boolean

 1

In some programming languages, for example Matlab and C, integers are used to represent the logical values
true and false. Generally, 0 is used for false, and any other integer can be used for true.

Java handles boolean values differently. There is a (primitive) type boolean, whose values are true and
false (that's it). This type has five operations whose operands are booleans:

Type boolean
 Values: true, false
 Operations: ! (not), && (and, or conjunction), || (or, or disjunction)
 == (equality, or equivalence), != (inequality, or inequivalence)

Here is a table that defines the five operations.

 b c | !b b && c b || c b == c b != c

 false false | true false false true false
 false true | true false true false true
 true false | false false true false true
 true true | false true true true false

We evaluate a few expressions in the interactions pane and discuss the operations.

1. !, which is read "not", is unary logical negation !false is true, and !true is false.

2. && is read and because b && c is true iff both b and c are true.

3. || is read or because b || c is true iff either b or c (or both) is true.

4. == is used for equality: b == c is true iff b and c have the same value.

5. != is used for inequality: b != c is true iff b and c have different values.

Relations

Six relations operate on the numeric types to yield boolean values.

b == c, b != c, b < c, b <= c, b > c, b >= c

You have probably seen these relations in other programming languages, so we don’t go into full details
here. The only strange point is that == is used for equality, and not =. Here are examples.

5 < 6 is true
5 >= 6 is false
5 < true is illegal because one operands is an int and the other a boolean.

These relational operators work for all the number types —int, double, char, etc. For example, we can test
whether 5 < 6.2 is true, or whether 6.0 == 7 is true. If the two operands are not of the same type, one is convert-
ed to the other type so that the operation can be carried out. More on such conversions later.

Short circuit evaluation

Evaluation of

5/0 == 3 && false

results in an error, because of the division by 0. This is to be expected. But evaluation of the same expression
with the operands reversed,

false && 5/0 == 3

does not produce an error message —it yields the value false. This is because evaluation of && is done in short-
circuit mode: as soon as the answer is known, evaluation stops. Since false && b is always false, no matter
what b is, there is no need to evaluate b.

Another way to look at the evaluation of b && c is to say that it is equivalent to an if-expression if b then c else
false, which can actually be written in Java using the expression

 b ? c : false // equivalent to b && c

Type boolean

 2

You will see this conditional expression later. Get used to it; it is useful.

In the same way, true || c is true no matter what the value of c is, so c is not evaluated in this case. The
expression b || c is equivalent to

 if b then true else c, or the Java expression b ? true : c

As you will see in several assignments, short-circuit evaluation is a useful tool in writing boolean expressions.

