Functions toString and equals in class Object

Function toString in class Object

Function toString in class Object is defined to return the name of the manilla folder, or object in which it appears. For example, evaluate this expression in DrJava’s interactions pane:

new Object()

and it will evaluate to something like java.lang.Object@d70b42 —that’s the name on the tab of the manilla folder or object, like the a0 or a1 that we have been writing from time to time. The name consists of the name of the class (including its package information), the @ sign, and then 6 hexadecimal digits, whose meaning you don’t have to know about at this point.

Object’s function toString is inherited in every class but is usually overridden

Since Object is the root of the class hierarchy, its function toString is inherited by every class, so the function appears in every object.

However, if you define function toString in a class, your definition overrides the inherited one. So, the toString function that we wrote in class Point in a previous web lecture overrode the toString function that was inherited from class Object. So, a call p.toString() calls the overriding function.
Later, in module 2, you will see that you may still be able to call the inherited function.
Function equals in class Object

Now let’s turn to a discussion of function equals, which is also defined in class Object —like this:

/** = “this object and object ob have the same name on their tabs

 (i.e. since object names are unique, they name the same object)”. */

public boolean equals(Object ob) {

 return this == ob;

}

We have shown the whole method in the object, to make sure that you understand that it really is there. You may not have seen a use of keyword this before. It refers to the name of the object in which is occurs, in this case, so it refers to a0 itself. Therefore, a call on this method tests whether ob contains the name a0.

You can see how function equals works by evaluating this sequence in DrJava’s interaction pane.

ob1= new Object();

ob1.equals(ob1) // This is true.
ob1.equals(new Object()) // This is false, because ob1 and the new object are different.

Function equals is often overridden in newly defined classes, with the convention is that equals in a newly defined class should test for equality of all fields of the class. We will return to a discussion of overriding function equals in module 2. But for now, we concentrate on testing equality of strings.

Testing for equality of strings

It is a big mistake to use == to test for equality of Strings, because a String value is an object, and not a value of a primitive type. For example the expression

"1" == "" + "1"

evaluates to false, even though both sides have the String "1" as their value, because == tests whether the names of objects, and not their contents, are equal. You can see this with the two objects whose names are in s0 and s1.
The moral of the story is: do not use == to test for equality of strings!

But class String does override function equals, with a function that tests for the equality of actual strings and not of object names. The following function calls all evaluate to true:

"1".equals("1")

"1".equals("" + "1")

"1".equals("" + (2-1))
Using == with strings is a mistake that all Java programmers have made at least once. If you make the mistake, you will find that it’s a tough bug to find —unless you are aware that it might happen and can look out for it. So be aware of the problem with using == for equality of strings.

