CS113: Lecture 9

Topics:
e Dynamic Allocation

e Dynamic Data Structures

What's wrong with this?

char *big_array(char fill) {
char a[1000]; int i;
for(i = 0; i < 1000; i++)

ali] = fill;
return a;
}
void main() {
char xb;
b = big_array(’z’);

}

It'’s the usual thing: the activation record for big_array
gets destroyed after the function returns, so b isn't
pointing to anything stable.

But what about dynamic allocation?

Remember the good old days of Java programming?

e If you want, say, a new Vector, you just use the new
operator to create one! When you have it you can
fill it with as much crap as you want.

e T he following Java code works just fine:

Vector getVector() {
return new Vector();

}

void main() {

Vector v = getVector();

/* do stuff with the vector */
}

Why does this work?

e Storage space for objects is allocated dynamically,
outside of the activation record.

e Within a function, the activation record keeps a
pointer to the dynamic object. (You've been using
pointers all this time!)

e When you're done with an object, the Java VM
determines this and garbage collects the memory.

3

The Heap

C lets you allocate memory dynamically too, but it’s
all explicitly controlled by the programmer. Dynamic
memory is stored outside of the activtion records for
functions, in a memory area called “the heap”:

(h

foo() int 13

int*

bar()

int array

mystruct*

foo() int 17

=L

mystruct

int*

main()

f\’/fH\’ /T

3.14
float

The Heap

The Execution Stack

Your keys to the heap: malloc and free

Use malloc (for “memory allocate”) to allocate memory
in the heap.

e malloc() takes an unsigned integer representing the
number of bytes to allocate

e It has type (void*), sO you must cast it to another
pointer type before using it

When you're done with the memory, use free to free up
the memory space in the heap.

e free takes a pointer to a chunk of memory freed by
malloc

o K & R say: ‘it is a ghastly error to free something
not obtained by calling malloc”

The paradigm: allocate the memory, check to make sure

The fixed program

it worked, use it, then free up the memory.

char *big_array(char fill) {

}

char *a; int 1i;
a = (char *) malloc(sizeof(char) * 1000);
/* Don’t forget to check if it’s null! */
if(a == NULL) return a;
for(i = 0; i < 1000; i++)

ali] = fill;
return a;

void main() {

char xb;

b = big_array(’z’);

/* do something with b */
free(b);

The Stack and the Heap

e ™
e ™
big_array() _
activation fill A
record
a —-\
N\ Y,
b Z’
/ \ b b
S Z
main()
activation b char* memory
record /
N\ Y, |
N\ Y,

When big_array finishes its activation record is destroyed,
but it returns (to b) a pointer to the new array in the
heap.

You can (and should) think of the heap as a big array
of indeterminate type, with static extent.

A more flexible version

The following function lets us make arrays of any size
we want!

char *big_array(char fill, int size) {
char x*xa;
a = (char *) malloc(sizeof(char) * size);
if(a == NULL) return a;
for(i = 0; 1 < size; i++)
ali] = fill;
return a;

}

Always check that a pointer is not NULL before deref-
erencing!

Dangling pointers

Always keep track of whether dynamically allocated mem-
ory pointed to by some pointer is still valid.

void main(void) {
int *array;
array = (int *)malloc(1000*sizeof (int));
if(array != NULL) {
/* Do stuff =/
}

free(array) ;

printf ("Number: %d\n", arrayl([5]);

malloc’s cousins

malloc() returns a pointer to a memory location in the
heap of a given size, but the contents of that memory
may be filled with ‘garbage’.

e calloc() returns pointer memory that is guaranteed
to be zeroed:

e Slightly different calling sequence, e.qg.

intptr = (int *) calloc(1000, sizeof(int));

If you need more memory than you first allocated, use
realloc:

intptr = (int *) malloc(1000 * sizeof (int));

intptr2 = (int *) realloc(intptr, 5000 * sizeof (int));

e realloc first tries to expand the memory pointed to
in the heap ‘in place’, then tries to find more space
elsewhere in the heap.

e If success, sets pointer to new memory location
(e.g. intptr above), frees old memory if neces-
sary, and returns pointer to new memory location
(intptr2). If failure, leaves original pointer and
memory unchanged, returns NULL.

10

What good is this malloc thing?

e Suppose you want to write a program which stores
names (of people) along with their addresses.

e One way to implement would be to define a struct
holding all of this information, and then define an
array of structs at the beginning of the program:

struct person_struct {
char name[30];
char address[60];

};

struct person_struct database[6000];

e Difficulties:

Need to know ahead of time the maximum size of
the database.

If the maximum size is 6000 and only 50 people
stored, much memory is wasted.

11

A naive implementation

struct person_struct {
char name[30];
char address[60];
};

struct database_struct {
struct person_struct people[100];
int num_people;

};

void add_person(struct database_struct *db,
char *pname, char *add) {
strcpy((db->people[db->num_people]) .name, pname);
strcpy((db->people[db->num_people]) .address, add);
(db->num_people) ++;
}

void main() {
struct database_struct db;
db.num_people = O;

add_person(&db, "Sherwood, Erik",
"1234 Street Ave., Ithaca, NY 14850");

12

Linked list implementation

#include <stdio.h>

#define NAME_SIZE 30
#define ADD_SIZE 60

struct list_item_struct {
char name [NAME_SIZE];
char address[ADD_SIZE];
struct list_item_struct *next;

};

struct database_struct {
struct list_item_struct *xfirst;

};

typedef struct list_item_struct list_item;
typedef struct database_struct database;

int initialize_db(database *db) {
db->first = NULL;
}

13

Adding list elements

int add_to_db(database *db, char *name, char *address) {
list_item *new_item_ptr;
new_item_ptr = (list_item *) malloc(sizeof(list_item));

if(new_item_ptr == NULL) return -1;
if (strlen(name) >= NAME_SIZE ||
strlen(address) >= ADD_SIZE) return -1;

strcpy(new_item_ptr->name, name);
strcpy(new_item_ptr->address, address);

new_item_ptr->next = db->first;

db->first = new_item_ptr;
return O;

14

Putting it together

void print_item(list_item 1) {

printf("Name: %s\n", l.name);

printf("Address: %s\n\n", 1l.address);
}

void print_db(database db) {
list_item *1 = db.first;
while(1 != NULL) {
print_item(*1);
1 = 1->next;
}
}

void main() {
database db;
initialize_db(&db);
add_to_db(&db, "Erik Sherwood", "1234 Street Ave.");
add_to_db(&db, "Homer Simpson",
"742 Evergreen Terrace");
add_to_db(&db, "Tony Blair",
"10 Downing Street");

print_db(db);

15

Removing elements

void remove_from_db(database *db, list_item *item) {
list_item *1 = db->first;

/* if database is empty */
if(1 == NULL) return;

/* if first element is the item */
if(1 == item) {

db->first = 1l->next;

free(1);

1 = NULL;

return;

}

/* otherwise, try to find it */
while(1->next != NULL && 1l->next '= item)
1 = 1->next;

/* we’ve either found item, or
come to the end of the list */
if (1->next == item) {
/* skip item in the list, and free memory */
1->next = item->next;
free(item);
item = NULL;

16

