CS113: Lecture 8

Topics:
e Defining Your Own Types

e Structures

Create your own types: typedef

Here’'s an example:

#define N 3

typedef double scalar; /* note defs outside fns */
typedef scalar vector[N];

typedef scalar matrix[N][N];
/* alternatively:
typedef vector matrix[N]; */

/* add(x,y,z) adds the vectors y and z,
placing the result in x */
void add(vector x, vector y, vector z) {
int 1i;
for(i = 0; i < N; i++) {
x[i] = y[i] + z[i];
}

e Declaring a scalar works like declaring an array of
Size 3.

e But the type of a scalar is pointer-to-double.

A syntactic heuristic: to use typedef, write a statement
to declare a variable of the type you want to redefine,
giving the variable the name of the new type. Then put
a typedef in front, and voila, you have a new type!

2

Structures

e [he structure mechanism allows us to aggregate
variables of different types

e struct definitions are usually placed outside of func-
tions so that they are in scope throughout the file,
as in the following example:

struct card_struct {
int number;
char suit;
}; /* note the semicolon after the definition! *x/

void some_function() {
struct card_struct a, b;

a.number = 3;
a.suit = ’D’;
b = a;

e The “) in a.num is the ‘“structure member oper-
ator”, which connects the structure name and the
member name. (A “member” is a variable in a
structure.)

e Assignment works just as you would expect, as if
there were a separate assignment for each structure
member.

More on structures

The reason a semicolon follows the struct definition is
that the definition is a statement. Also, you can declare
a variable of that struct type using basically the same
syntax:

struct card_struct {
int number;
char suit;

} my_card;

You're then free to use struct card_struct to define new
structures.

You can also define “anonymous’, one-time structures,
as in:

struct {
int number;
char suit;
} my_card;

Here’s a correct but totally useless declaration that de-
fines neither a structure type nor a new variable:

struct {
int number
char suit;
};

Typedef with Structs

In the previous example the type of the structure was
struct card_struct, which is clunky. We can use typedef
to define an equivalent type with a more concise name:

struct card_struct {
int number;
char suit;

s
typedef struct card_struct card;

void some_function() {
card a, b;

a.number = 3;
a.suit = ’D’;
b = a;

}

You can also define a structure type like this, without
explicitly “naming” the structure, to give it a one-word
type name:

typedef struct {
int number;
char suit;

} card;

Example: points in the plane

#include <math.h>

struct point_struct {
double x;
double y;

s

typedef struct point_struct point;

double distance(point pl, point p2) {
double dx, dy, dist;
dx = pl.x - p2.x;
dy = pl.y - p2.y;
dist = sqrt((dx * dx) + (dy * dy));
return(dist);

}

void main() {
/* here’s a convenient notation for
structure initialization: */
point a = { 3.5, 4.5 };
point b = { 6.5, 0.5 };
printf("Distance: %f\n", distance(a, b));

What happens here?

typedef struct {
char name[50];
int age;

} employee;

void main() {
employee toml, tom2;
strcpy(toml.name, "Thomas Wolfe");
toml.age = 104;
tom2 = tomil;
tom2.name[0] = °G’;
printf("Name: %s", toml.name);

Note that since name is defined as an array, assignment
doesn’'t work outside of a structure. Therefore, you'd
think that assignment would cause a compilation prob-
lem here.

BUT: the code not only compiles, but the assignment
provides a deep copy of the structure. The array is
copied element-by-element, rather than just by point-
ers. So toml stays ‘““Thomas Wolfe', while poor tom2
becomes ‘“Ghomas Wolfe'" .

SO you can copy entire arrays by embedding them in
structures!

A Comparison Function

There's no standard way to compare structures. You
can’'t try toml == tom2 in the previous example, for ex-
ample. (Or toml < tom2.)

You can always write comparison code, if you need to:

int compare_employees(employee el, employee e2) {
return (el.age == e2.age) &&
(strcmp(el.name,e2.name) == 0);

}

Structures work seamlessly with functions. A structure
is a type, so it can be the type of a function parameter
(as here), or a return type:

point sum(point pl, point p2) {
point psum = {pl.x + p2.x, pl.y + p2.y};
return psum;

}
You can also define an array of structures:

int i; employee employee_list[100];
for(i=0;i<100;i++) {
/* initialize employee i */

}

More on the ‘sizeof” operator

The sizeof operator takes an “object”, like a type or
variable or array, and returns the size, in bytes, of the
object. It's useful for:

e Allocating memory dynamically (stay tuned)
e Determining the size of an array (or string!)

How to determine the number of elements in an array:

int array_size;
employee employee_list[100];
array_size = sizeof(employee_list) / sizeof (employee) ;

You could even #define it:

#define NUM_EMPLOYEES
(sizeof (employee_list) / sizeof (employee))
/* or *x/
#define NUM_EMPLOYEES
(sizeof (employee_list) / sizeof (employee_list[0]))

Like a Horse and Carriage...

Pointers and structures are a powerful combination, and
are one that is used all the time by serious C program-
mers.

Suppose that p is a pointer to a structure that has an
int member x. Using standard notation, if we want to
access x we first have to dereference p using the *“*”
operator, and then use the "“." operator to get the
member, as in:

y = (xp).x;

(The parentheses are necessary because the structure
member operator *“.” has higher precedence than the
“X'" operator.)

This is done so often that there's a special notation for
it:
y = p—>X;

Which is much cleaner (especially for more complex ex-
pressions!) and, to me, seems more intuitive. (It's an
arrow, so it even looks like a “pointer”!)

10

Self-referential structures

What's wrong with this:

struct tree_node_struct {
char *name;
struct tree_node_struct left;
struct tree_node_struct right;

};

The structure itself is recursive, and there's no way to
figure out what it means! (Shouldn’t this structure be
infinitely big?)

You can, however, define structures recursively, by in-
cluding pointers to other structures of the same typel!

struct tree_node_struct {
char *name;
struct tree_node_struct xleft;
struct tree_node_struct *right;

};

(Draw a tree!)

11

When dealing with self-referential structures, it's com-
mon to think of “pointer-to-type” as the type of the
structure, and deal with all the structure elements us-
ing -> notation. You can even make it explicit using a
typedef:

/* define the type */
typedef struct tree_node_struct *node;

/* do stuff */
printf (a_node->name) ;
left_node = a_node->left;

This will be even more obviously useful after we've seen
dynamic memory allocation.

12

