
CS113: Lecture 6

Topics:

• Arrays

• Pointers and Arrays

• Pointer arithmetic

• Function pointers

• Strings

1

Arrays

• Often, programs use homogeneous data. For ex-
ample, if we want to manipulate some grades, we
might declare

int grade0, grade1, grade2, grade3;

• If we have a large number of grades, it becomes
cumbersome to represent/manipulate the grades,
when each grade has a unique identifier. (How to
find average? maximum? etc.)

• Arrays (a feature of many programming languages)
allow us to refer to a number of instances of the
same data type, using a single name.

• For example,

int grade[4];

makes available the use of int variables grade[0],
grade[1], grade[2], grade[3], in a program.

• Note that arrays in C are zero-indexed – numbering
begins at zero. If the size of an array a is SIZE, then
the first accessible element of a is a[0], and the last
is a[SIZE - 1].

• Now, to access elements of this array, we can write
grade[expr], where expr is any expression (evaluat-
ing to an integer within the appropriate range).

2

Array example: grades

#include <stdio.h>

void main() {
int grades[11], num_grades = 0;
int i;
float sum, average;

printf("Please enter up to 10 grades, "
"terminated by 0.\n");

scanf("%d", &(grades[num_grades]));
while(grades[num_grades] != 0) {

num_grades++;
scanf("%d", &(grades[num_grades]));

}

/* Compute average */
sum = 0;
for(i = 0; i < num_grades; i++) {

sum += grades[i];
}
/* Assume more than one grade entered */
average = sum / num_grades;
printf("The average of the grades is: %f",

average);
}

3

Arrays Are Also Pointers!

Pointers and arrays are almost exactly the same.

void main() {
int a[3];
a[0] = 4;
a[1] = 5;
a[2] = 6;

}

a[0]

a

a[1]

a[2]

4

5

6

activation record

main()

• The type of a is (int *).

• As a pointer, a points to the first memory location
in the array.

• Stay tuned for details...

4

Arrays in C

• No bounds checking. Make sure that you only ac-
cess array elements 0 through N - 1 for an array of
size N.

A program that writes to “out-of-bounds” locations
will compile and often run – beware! Writing to
such invalid locations corrupts memory, sometimes
the values of other variables. Very bad!

• The size of an array must be a constant. Here,
“constant” means that the value can be determined
at compile-time (so we know how much space to
allocate in the activation record for the function).

void func(int size) {
int b[size]; /* illegal */
int g[(8 * 5) + 2]; /* fine */

}

• C has no internal mechanism for copying or com-
paring arrays.

If a, b are arrays of the same type:

– expression a = b is illegal – a declared array name
cannot be treated as a variable, as a is here.

– expression a == b is legal – it checks to see if
the pointers a and b point to the same memory
location, and will return 0 (FALSE) if a and b
are two different arrays with the same elements
in them.

5

Example: Change-and-sum

#include <stdio.h>

int change_and_sum(int *a, int size) {
int i, sum = 0;
a[0] = 100;
for(i = 0; i < size; i++)

sum += a[i];
return sum;

}

void main() {
int a[5] = { 0, 1, 2, 3, 4 };
printf("Sum of elements of a: %d\n",

change_and_sum(a, 5));
printf("Value of a[0]: %d\n", a[0]);

}

Notice:

• The shortcut to initialize the array

• Array passed as parameter – along with the size

• Function change_and_sum takes a pointer, and then
treats it like an array

• Changes made to array persist!

6

Example: sorting numbers

void sort_ints(int *a, int size) {
int i, j, k, temp;
for(i = 0; i < size; i++) {

/* find largest elt. of
a[i], ..., a[size-1] */

k = i;
for(j = i + 1; j < size; j++)

if(a[j] > a[k]) k = j;

/* swap a[i], a[k] */
temp = a[k];
a[k] = a[i];
a[i] = temp;

}
}

void main() {
int a[6] = { 3, 2, 8, 1, 5, 9 }, i;

sort_ints(a, 6);
for(i = 0; i < 6; i++)

printf("%d\n", a[i]);
}

7

More on pointers and arrays

• Suppose that a is an int array of size 10.

• If pa is a pointer to an integer, i.e.,

int *pa;

then the assignment

pa = &a[0];

sets pa to point to element zero of a.

• When does x = *pa; make sense – what does the
type of x have to be? What does it do?

• If pa points to an element of an array, then (by
definition) pa + 1 points to the next element.

In general, pa + i points to the ith element after
the element pointed to by pa.

• Example.

int a[4] = { 0, 1, 2, 3 };
int *p;
p = &a[0];
printf("%d\n", *(p + 2));
scanf("%d", p + 3);
printf("You typed: %d\n", a[3]);

8

Even more on pointers and arrays

• In fact, the name of an array is a synonym for the
address of the initial element. As an example, when
we have the declarations

int a[10];
int *pa;

&a[0] is the same as a, and thus pa = &a[0]; is the
same as pa = a;.

• This is why the changes to an array made by a
function persist: we were simply passing in a pointer
to the first (zero indexed) element of the array.

• Accordingly, for any expression b of type int *, b[i]
can always be written as *(b + i), and vice-versa.

For example, given the above declarations:

a[i] and *(a + i) are equivalent

pa[i] and *(pa + i) are equivalent

• Note that an array name (like a assuming the above
declarations) is not a variable, so statements like
a = pa; and a++; are illegal. (You also don’t want
to form the expression &a.)

9

Practice: Pointers and Arrays

void main() {
int a[4] = { 0, 1, 2, 3 };
int *pa;

pa = a + 1;
printf("%d\n", *pa);
printf("%d\n", pa[2]);
pa++;
printf("%d\n", pa[0]);
scanf("%d", pa + 1);
printf("You typed: %d\n", a[3]);

}

10

Pointer Arithmetic

• Pointer addition: pointer plus int

Saw that if a pointer p points to an element of an ar-
ray, then p + i is a pointer (of the same type) point-
ing to the ith element after the element pointed to
by p.

• Pointer subtraction: pointer minus pointer

If p and q point to elements of the same array, then
q - p gives the number of elements between p and
q.

• Pointer comparison: pointer relation pointer

Permissible relations: ==, !=, <, <=, >, >=

If p and q point to elements of the same array, then

p < q

is true if p points to an earlier member of the array
than q does.

• Note: CAN’T add two pointers, or perform any sort
of multiplication, etc.

– A pointer is a physical memory location, repre-
sented by an integer, but you should never think
of them as integers. (Try it!).

– Pointer arithmetic works at the level of “the
next element in the array”, NOT at “the next
physical memory address”.

11

Example: Elements before zero

(Example from PCP)

void main() {
int array[] = { 4, 5, 8, 9, 0, 1, 3, 2 };
int index;

index = 0;
while(array[index] != 0)

index++;

printf("Number of elements before 0: %d\n", index);
}

void main() {
int array[] = { 4, 5, 8, 9, 0, 1, 3, 2 };
int *array_ptr;

array_ptr = array;
while((*array_ptr) != 0)

array_ptr++;

printf("Number of elements before 0: %d\n",
array_ptr - array);

}

12

Function pointers

• Compiled code is just a bunch of 1’s and 0’s in-
terpreted by the computer as instructions. Func-
tions are just chunks of compiled code; they are
stored at fixed memory locations and the chunks
are copied onto the execution stack (as activation
records) when the functions are invoked.

• Function pointers hold the addresses of functions;
dereferencing a function pointer invokes the func-
tion. Function pointers can only point to functions
that have the same kind of prototype.

• Declare a function pointer by writing a prototype
for the kind of function you it to be able to point
to, then add a * and parentheses, e.g.:

int (*fctnptr)(int, int);

declares fctnptr to be a pointer to a function that
takes two ints as arguments and returns an int.

• Use the & operator applied to a function’s name to
get the address of a function; use the * operator to
dereference and invoke the function pointer.

• Function pointers can be placed in arrays, be used
with typecasts (dangerous!), and follow the normal
rules of pointer arithmetic.

13

Example: Function pointers

/* Function prototypes for functions defined later
in the source file */
int add(int x, int y);
int subtract(int x, int y);
int multiply(int x, int y);

void main() {
int (*ptr)(int, int);
int a = 3, b = 4;

ptr = &add;

/* Prints 7 */
printf("Add: %d + %d = %d\n", a, b, (*ptr)(a,b));

ptr = &multiply;

/* Prints 12 */
printf("Multiply: %d * %d = %d\n", a, b, (*ptr)(a,b));

}

14

Example: Arrays of function pointers

/* Function prototypes for functions defined later
in the source file */
int add(int x, int y);
int subtract(int x, int y);
int multiply(int x, int y);

void main() {
/* ptr is an array of 3 function pointers */

int (*ptr[3])(int, int);
int a = 3, b = 4;

ptr[0] = &add;
ptr[1] = &subtract;
ptr[2]= &multiply;

/* Prints 7 */
printf("Add: %d + %d = %d\n", a, b, (*ptr[0])(a,b));

/* Prints 12 */
printf("Multiply: %d * %d = %d\n", a, b, (*ptr[2])(a,b));

}

15

Strings: they’re just arrays!

• Strings are one-dimensional arrays of chars.

• By convention, a string in C is terminated by the
null character, ’\0’, or 0. (We have ’\0’ == 0.)

• String constants (such as those passed to the func-
tion printf) are enclosed in double quotes.

• When allocating char arrays that will hold strings,
make sure you allocate enough space!

– When dealing with strings in C, you should al-
ways think of the underlying array of characters.

– Also: always think in terms of the activation
records! You must explicitly allocate all the
space for every string you use, and space allo-
cated as part of a function call will be destroyed
when the function finishes.

– We’re not in Java anymore. Are you starting to
miss it?

16

Example: “Double” printing

#include <stdio.h>

void dprint(char *s) {
int i;
/* for this loop to exit, s

better terminate with 0! */
for(i = 0; s[i] != 0; i++)

printf("%c%c", s[i], s[i]);
}

void main() {
/* s and s2 are the same strings */
char s[] = "Hi!";
char s2[] = { ’H’, ’i’, ’!’, ’\0’ };

dprint(s); /* HHii!! */
if(s == s2) {

printf("Points to identical string");
} else {

printf("Does not");
}

}

17

Example: “squeeze” function

(Based on an example from K&R)

#include <stdio.h>

/* squeeze deletes all instances of the
character c from the string s. */

void squeeze(char *s, int c) {
int i, j;

for(i = j = 0; s[i] != 0; i++) {
if(s[i] != c) {

s[j] = s[i];
j++;

}
}
s[j] = 0;

}

void main() {
char s[100];
strcpy(s, "Clzzeazn mez zup!");
printf("Before squeeze: %s\n", s);
squeeze(s, ’z’);
printf("After squeeze: %s\n", s);

}

18

String handling functions
These are from string.h. See Appendix B3 of K&R for
an exhaustive list.

• int strlen(char *s);

Returns the length of the string s.

• char *strcat(char *s1, char *s2);

Takes two strings as arguments, concatenates them,
and puts the result in s1. The programmer must
ensure that s1 points to enough space to hold the
result. The string s1 is returned.

• char *strcpy(char *s1, char *s2);

The string s2 is copied into s1. Whatever exists in
s1 is overwritten. It is assumed that s1 has enough
space to hold the result. The value of s1 is returned.

(Remember, using = to assign one string to another
only copies pointers, it doesn’t actually give a new
copy of the string. And it won’t work at all if the
left hand side is a string array.)

• int strcmp(char *s1, char *s2);

Integer is returned that is less than, equal to, or
greater than zero, depending on whether s1 is lexi-
cographically less than, equal to, or greater than s2
(respectively).

A good exercise is to implement these functions yourself.

19

The strcmp ordering: think dictionary

From “lowest” to “highest”:

"1"
"128"
"16"
"2"
"32"
"4"
"64"
"8"
"Avocado"
"Can"
"Can not"
"Can’t"
"Cannot"
"Cantor"
"Lime"
"apple"
"banana"
"c"
"c language"
"c programmer"
"cantaloupe"

20

Example: Reversing a string

#include <string.h>

void reverse(char *s) {
int halflen, len, i;
char temp;

len = strlen(s);
halflen = len / 2;

for(i = 0; i < halflen; i++) {
/* swap s[i] and s[len - 1 - i] */
temp = s[i];
s[i] = s[len - 1 - i];
s[len - 1 - i] = temp;

}
}

void main() {
char s[20];
strcpy(s, ".desrever ma I");
printf("Before reversal: %s\n", s);
reverse(s);
printf("After reversal: %s\n", s);

}

21

Multidimensional arrays

• Arrays can have more than one dimension.

• Example of declaring a two-dimensional array of
ints:

int b[3][7];

Makes available 21 ints for use: b[i][j] where i
ranges from 0 to 2, and j ranges from 0 to 6.

• Can also declare three-dimensional, etc. arrays.

int c[2][4][10];

• Row major format for multidimensional arrays.

22

Arrays of Strings

void get_string(char s[]) {
scanf("%s", s);
printf("Length of your string: ");
printf("%d\n", strlen(s));

}

void main() {
char arr[8][81];
get_string(arr[1]);
printf("You typed the string: %s\n", arr[1]);
printf("The first character you typed was: ");
printf("%c\n", arr[1][0]);

}

Notice:

• Two-dimensional array of chars acts as array of
strings (of size 8): arr[0], ..., arr[7]

• scanf("%s", ...); used to read strings. (It’s dan-
gerous – we’ll see a better next time.)

• To refer to a specific character of one of the strings
arr[i], tack on another index: arr[1][0] for in-
stance refers to the first (zero-indexed) character
of the string arr[1]

23

strlen implementations

(from K&R)

int strlen(char *s) {
int n;
for(n = 0; *s != ’\0’; s++)

n++;
return n;

}

/* pointer arithmetic version */
int strlen(char *s) {

char *p = s;

while(*p != ’\0’) p++;
return(p - s);

}

24

strcmp implementations

/* strcmp: return <0 if s<t, 0 if s==t, >0 if s>t */
int strcmp(char *s, char *t) {

int i;

for(i = 0; s[i] == t[i]; i++) {
if(s[i] == ’\0’)

return 0;
}

return s[i] - t[i];
}

/* pointer version */
int strcmp(char *s, char *t) {

for(; *s == *t; s++, t++) {
if(*s == ’\0’)

return 0;
}

return *s - *t;
}

25

strcpy implementations

/* "obvious" way */
void strcpy(char *s, char *t) {

int i = 0;

do {
s[i] = t[i];

} while (t[i++] != ’\0’);
}

/* slick pointer version */
void strcpy(char *s, char *t) {

while(*s++ = *t++) ;
}

26

What does == do here?

void main() {
char s[20];

strcpy(s, "Hello");

if(s == "Hello") {
printf("Equal.\n");

} else {
printf("Not equal.\n");

}
}

What’s going on?

• A string literal like "Hello" is represented in the
function’s activation record as a char array, like a
regular string. (It has to go somewhere, right?!)

• BUT the array is static (which we’ll talk about
later) AND it can’t be modified.

• Thus s = "Hello"; doesn’t behave as you might
think.

• Are the two instances of "Hello" in the function
above stored in distinct arrays? It’s implementation-
dependent.

27

