CS113: Lecture 5

Topics:
e Pointers

e Pointers and Activation Records

From Last Time: A Useless Function

#include <stdio.h>
void get_age(int age);

void main() {

int age;

get_age(age);

printf("Your age is: %d\n", age);
}

void get_age(int other_age) {
printf("Please enter your age.\n");
scanf ("/d", &other_age);

}

e T his is a contrived example, because we could just
have get_age return the age as an integer.

e But what if we want a function to modify the con-
tents of a variable we pass to it?

— Suppose you want a function to sort an array of
numbers, or swap the contents of two memory
locations?

— And how does ‘“scanf” work? (Remember the
& that comes before the variable you pass to
scanf?)

From last time: the execution stack

e ™\
get_age() o1
activation record
other_age
function call
L creates the
new record
e ™\
main()
L e)
activation record o
age
g J

Remember that when get_age() finishes, its activation
record is destroyed, so the value stored in other_age is
lost.

Can we do any better?

What if?

Suppose that when main() calls get_age(), we passed a
“pointer” to the age variable in main(), so that get_age()
knew about that variable.

get_age()
activation record

L —

pointer to "age"

main()
activation record

Then, perhaps, we could tell get_age() to modify the
variable that it points to.

In fact, C lets us do exactly this, using pointers.

Introduction to Pointers

A variable in a program is stored in a certain number
of bytes at a particular memory location, or address,
in the machine.

Pointers allow us to manipulate these addresses ex-
plicitly.

To declare a pointer variable: add a star to the type
you want to point to. Example:

int *a;

declares a variable a of type int *, which can be
used to hold the address of (or a “pointer to”) an
int.

Two unary operators (“inverses”):

— & operator - ‘“address of” operator. Can be
applied to any variable. Type of resulting ex-
pression has ‘“one more star” than original ex-
pression.

— x operator - “dereference” operator. Can be ap-
plied only to expressions that represent memory
locations. Accesses the object that the pointer
points to. Type of resulting expression has “one
less star” than original expression.

Pointers: Example 1

void main() {
int x =1, y =2, z = 3;

int *ip;
ip = &x;
Z = *xip;

}

Here’'s what it looks like after the last statement:

T~ ip
1 z
main()
activation record
2 y
1 X

Don’'t Get Confused!

Pointer notation is pretty confusing:

e \WWhen we declare int *a, we're saying that the type
of a is pointer to variables of type int. It might
be less confusing if we wrote int*x a, to emphasize
that the type of a is int*, but this isn’t usually how
C programmers write the declaration. (It works,
though.)

e T he x operator dereferences the pointer to get at
the variable we're pointing to. It makes the pointer
“less of a pointer”, whereas the * in the declaration
makes the type “more of a pointer’”.

e In short: don't confuse the x operator with the
* in the declaration of a pointer variable (or with
multiplication)!

Pointers: Example 2

int x =1, y = 2;

int *ip;

char c;

char *cp;

ip = &x; /* ip now points to x */
printf("%d\n", *ip); /* prints 1 */
printf("%d\n", *ip + 2); /* prints 3 */
y = *ip; /* y is now 1 */

xip = 0; /* x is now O */

printf("%d\n", x); /* prints 0 */
cp = &x; /* doesn’t work; types don’t match */
xcp = ’z’; /* what happens? */

cp = &c;

kCcp = 177 ;

printf("%c\n", c); /* prints z */

printf vs. scanf

void main() {
int k;
printf("Enter an integer: ");
scanf ("%d", &k);
printf("%d4d", k);
}

This also works — scanf is happy as long as it gets a
pointer:

void main() {

int k, *pk;
pk = &k;
printf("Enter an integer: ");

scanf ("%d", pk);
printf("%4d", k);
}

Who wants what information?

e printf("J%d", ...); expects an int, since it needs
to know what to print out

e scanf("¥%4d", ...); expects the address of an int,
since it needs to know where to place the int typed
in

— scanf doesn’t care about the actual value of the
int that it should write to

More practice

void main() {
int a = 3, b = 3;
int *pa, *pb;

pa = &a;
pb = &b;

if(pa == pb)

printf("pa and pb are equal.\n");
if (*pa == *pb)

printf("*pa and *pb are equal.\n");

(xpa)++; /* careful: different from *pat++ */
*pb += *pa;
printf("a: %d, b: %d\n", a, b);

pb = pa;
*pa += *pb;
printf("a: %d, b: %d\n", a, b);
if(pa == pb)
printf("pa and pb are equal.\n");
if (*pa == *pb)
printf("*pa and *pb are equal.\n");

/* super tricky */
*((0 > 1) ? &a : &b) = 5;

10

How to swap two values?

What's wrong with this?

void swap(int x, int y) {
int temp;

temp = X;

X =Y,

y = temp;
+

void main() {

int a = 3, b = 5;

swap(a, b);

printf("a is %d, b is %d\n", a, b);
}

11

A correct swap

void swap(int *px, int *py) {

int temp;
temp = *px;
*PX = *py;
*py = temp;

}

void main() {
int a = 3, b =
swap(&a, &b);
printf("a is %d, b is %d\n"

5;

}

, a, b);

12

Be careful with your new toys.

When you're using pointers, always think of the activa-
tion records that will be generated by the program!

e Do not point at expressions that are not variables.

int k = 1, *ptr;
ptr = &3; /* illegal */
ptr = &(k + 99); /* illegal */

e Do not try to dereference non-pointer variables.

int k;
printf("%4d", *k); /* illegal */

e What's wrong with this?

int *function_3() {
int b;
b = 3;
return &b;

¥

void main() {

int *a;

a = function_3();

printf("a is equal to %d\n", *a);
}

— When a function returns, its activation record
(along with the data it contains) gets destroyed!

13

An example

void main() {
int a, b;
int *pc, *pd;
int **ppe, **xppf;

a = 3;
b = 5;
pc = &a;
pd = &b;
(xpd) ++;

printf("a: %d b:

*pc += *pd;

printf("a: %d b:

ppe = &pc;
ppf = &pd;
*ppf = pc;
*pd = 12;

printf("a: %d b:

**xppe = 50;
**xppf = 15;

printf("a: %d b:

%d\n" ,

%d\n",

%d\n" ,

%d\n" R

a,

a,

a,

a,

b);

b);

b);

b);

14

