CS113: Lecture 4

Topics:
e Functions

e Function Activation Records

Why functions?

e Functions add no expressive power to the C lan-
guage in a formal sense.

e Why have them?

— Breaking tasks into smaller ones make them
easier to think and reason about

— Facilitates code re-use (not just within one pro-
gram, but in others)

— Makes it possible to hide away details of one
task from the rest of program, which does not
care

e T he ideal function performs a single, well-defined
task: testing if a given number is prime, computing
the number of days in a given month, etc.

— The less specific a function is to the program
in which it is initially used, the more reusable it
tends to be

— On the other hand, don’t waste lots of time
writing a general function if it's not needed for
your task. Code reuse is nice, but atypical in
practice.

Example #1: A simple function

int power(int base, int exp) {
int i, p = 1;
for(i =1; i <= exp; i++)
p *= base;
return p;

}

Anatomy of a function:

e Function has the general form

return-type function-name(parameters) {
declarations
statements

e Function definitions can appear in any order

e Names used by power (base, exp, p) are “local” to
power, and are not visible to any other functions.
DO NOT USE GLOBAL VARIABLES.

e If the return-type is non-void, every path of execu-
tion must end in a return statement

o If the return-type is void, then return; can be used
to terminate the function at any point

Example #1 in context

int power(int base, int exp);

void main() {
int i = 3, j = 4;
printf("%d raised to the power %d is %d.\n",
i, j, power(i, j));
}

int power(int base, int exp) {
int i, p = 1;
for(i = 1; i <= exp; i++)
p *= base;
return p;

}

Notes:

e int power(int base, int exp); at thetopisa func-
tion prototype; tells compiler what kind of function
power iS, sO that it can check function calls

e Distinction between

— parameters of a function — variables in parenthe-
sized list (for power, parameters are base, exp),
and

— arguments of a function call — the actual values
passed to the function (here, 3, 4)

Yet another example

void print_square(int a);
int square(int a);

void main() {
int 1i;
for(i = 1; i <= 10; i++)
print_square(i);

}

void print_square(int a) {

printf ("The square of ’d is: %d\n", a, square(a));
}

int square(int a) {
return(a * a);

}

Call by value

In C, all arguments to functions are passed by value:
the function is given copies of the arguments, and
not the originals

A called function is given the values of its argu-
ments in temporary variables, not the originals

A called function cannot directly alter a variable in
the calling function — it can only alter its private,
temporary copy

Example.

void increment(int a) {
at++;

}

void main() {
int b = 3;
increment(b);

printf("%d\n", b);
}

Call by value: an asset?

K & R says, “Call by value is an asset ... not a liability.”
Here's one example:

int power(int base, int n) {
int i, p;
p=1;
for(i = 1; i <= n; i++)
p = p * base;
return(p);

}

which is equivalent to a program where we “use up” the
function argument n:

int power(int base, int n) {
int p;
for(p=1; n > 0; n—)
p = p * base;
return(p);

}

What's the problem here?

#include <stdio.h>
void get_age(int age);

void main() {

int age;

get_age(age);

printf("Your age is: %d\n", age);
}

void get_age(int other_age) {
printf("Please enter your age.\n");
scanf ("%d", &other_age);

}

T he value of other_age gets destroyed when the function
get_age returns!

Activation Records in C: A First Look

A high-level view of memory:

s ™
get_age() o1
activation record
other_age
function call
L) creates the
new record
s ™
main()
L »
activation record o
age
N J

e C is call-by-value, so a new other_age memory |o-
cation gets created, and when the function gets
called, the argument to the function gets copied
into it.

e \When get_age() finishes, its activation record is de-
stroyed. so the value stored in other_age is lost.

e Meanwhile, the age variable in function main is still
uninitialized...

Activation Records

More formally,

e An activation record is a chunk of memory that is
allocated by the program every time a function is
invoked.

e It includes space (in memory) for the parameters of
the function, as well as all the variables declared by
the function.

e T he parameters are initialized by the arguments of
the function.

e [he activation record also includes a “pointer’” to
the calling function, so the program knows where
to go when the function finishes.

e T he activation records form an execution stack,
with main() at the bottom and the current func-
tion at the top.

Other languages, like Java, also include activation records.
It isn’t strictly necessary to understand how they work
to use the language effectively, but with a low-level lan-
guage like C it definitely pays off.

10

An example of a recursive function

Because a fresh activation record is created each time a
function is called, C supports recursion, where a function
calls itself:

int fact(int number);

void main() {

int result;

result = fact(4);

printf("4 factorial is %d\n", result);
}

int fact(int number) {
if (number == 0)
return 1;
/* else */
return(number * fact(number - 1));

11

Activation records with recursion

Here's what the execution stack looks like after the last
call to fact() in the previous program, but before it
returns:

fact() 0
activation record number
J
P
fact() 1
activation record number
J
N\
fact() 2
activation record number
J
N\
fact() 3
activation record number
J
N\
fact() 4
activation record number
J
N\
main() 7?
activation record result

12

Apples and Oranges

#include <stdio.h>

void print_fruits(int oranges, int apples);

void main() {
int apples, oranges;
printf("How many apples do you have?");
scanf ("%d", &apples);
printf("How many oranges do you have?");
scanf ("/d", &oranges);
print_fruits(apples, oranges);

}

void print_fruits(int oranges, int apples) {
printf("You have ’d oranges and %d apples.",
oranges, apples);

13

How old are you?

#include <stdio.h>
int get_age(int year);

void main() A{

int age, year;

year = O;

age = get_age(year);

printf("Your age is: %d\n", age);
}

int get_age(int year) {
printf("What year were you born?");
scanf ("/d", &year);
return(2005 - year);

}

14

Play again?

int play_again() {
char response;
printf("Would you like to play again (Y/N)?");
scanf ("%c", &response);

if (response == ’Y’)
return(1);
else if(response == ’N’)

return(0);

15

Tallying scores

#include <stdio.h>

void do_one_score(int total);

void main() {

}

int total, 1i;

total = O;

for(i =1; i <= 10; i++)
do_one_score(total);

printf ("Total: %d\n", total);

void do_one_score(int total) {

int score;

printf("Enter a score: ");
scanf("%d", &score);

total += score;

16

Tallying scores, again

Global variables are visible to every function in the source
file.

#include <stdio.h>
int total = O;
void do_one_score(void);

void main() {
int 1i;
for(i = 1; i <= 10; i++)
do_one_score();
printf ("Total: %d\n", total);

}

void do_one_score(void) {
int score;
printf("Enter a score: ");
scanf ("%d", &score);
total += score;

17

Tallying scores, yet again

static variables persist between function calls.

#include <stdio.h>
int running_total(void);

void main() {
int i, total;
for(i =1; i <= 10; i++)
total = do_one_score();
printf ("Total: %d\n", total);

}

int running_total(void) {
static int total = O;
int score;
printf("Enter a score: ");
scanf ("%d", &score);
total += score;
return total;

18

