CS113: Lecture 3

Topics:
e Variables
e Data types
e Arithmetic and Bitwise Operators

e Order of Evaluation

Variables

Names of variables:

e Composed of letters, digits, and the underscore
(") character. (NO spaces; use underscore in-

stead.)
e First character must be a letter.

e At least the first 31 characters matter — after that,
they may not.

e You can't use keywords (like if, else, etc.) for
variable names.

Similar rules for naming functions, etc.

Data types

e (C's basic types and typical sizes:

char - a single byte, capable of holding one in-
teger/character (8/16 bits)

int - an integer (16/32 bits)

float - single-precision floating point (32 bits)
double - double-precision floating point (64 bits)
NOTE: there is no basic ‘string” type.

e Actual size is compiler- and machine-dependent!
(You can find out what the size is if you need to.)

e Qualifiers (e.g. unsigned, long) can be applied.

An integer can be short, long, and even long long

If it's unsigned it means that only positive inte-
gers can be represented. (If you try to do any
operations with unsigned integers and negative
integer constants, weird things might happen.)

The type unsigned long long int lets you repre-
sent very large positive integers!

Don't worry too much about all the different
types unless you need to.

Variable declarations

Variables must be declared at the start of a func-
tion, before use.

int lower;
int upper;
int step;
char c;
char d;

Variables with the same type can be grouped to-
gether:

int lower, upper, step;
char c, d;

Variables can also be initialized in the declaration.

int lower = O, upper = 8, step = 1;
char ¢ = ’f’, d = ’z’;

What happens if a variable is not initialized and
then used?

void main() {

int a;

printf("The value of a is: %d\n", a);
}

Examples of Constants

Integer constant: 1234
long int constant: 12345789 or 123456789L

Integers can be specified in octal (leading zero) or
hexadecimal (leading 0x or 0X): 037, Oxi1f.

Floating-point constant: 123.4

Character constants

All characters are represented as integers (usually
signed), and can be treated as integers.

Escape codes correspond to characters, for use in
single-quotes:

— Examples: \n (newline), \\ (backslash), \" (dou-
ble quote)

— Example use: char a = ’\n’;

Variables of type char can be thought of as either
a character of an integer.

printf("%c", ’a’); /* a is printed */
printf("%d", ’a’); /* 97 is printed */
printf("%c", 97); /* a is printed */
printf("%4d", 97); /* 97 is printed */

Lower-case letters, upper-case letters, digits ‘“con-
secutive”

'a’ == 97, b’ == 98, . . ., 'z’ == 122
'A> == 65, 'B’ == 66, . . ., 'Z’ == 90
’Q7 == 48, 1’ == 49, . . ., 9’ == 57

Some more examples of the integer values corre-
sponding to character constants:

2§’ == 38, %’ == 42, ’\n’ == 10, ’\\’ == 92,

char Example

void main() {
char i;
printf("Here’s the alphabet, in lower-case:\n");
for(i = 97; i <= 122; i++) {
printf("%c", i);
}
printf("\n\nHere’s the alphabet, in upper-case:\n");
for(i = 65; i <= 90; i++) {
printf("%c", i);

+
}
void main() {
char i;
printf("Here’s the alphabet, in lower-case:\n");
for(i = ’a’; i <= ’z7; i++) {

printf("%c", i);
}
printf ("\n\nHere’s the alphabet, in upper-case:\n");
for(i = ’A’; i <= Z7; i++) {
printf("%c", i);
}

String constants

Strictly speaking, there is no string type, so there can't
be any string constants. (A string is represented as an
array of characters.)

Fortunately, C lets us deal with strings as if they were
constants, so that they can be passed to functions that
do things with strings. Just put the string in double-
quotes:

e Example: "A string" is a string.

e The statement printf("A string"); would print
that string.

e You'll never see anything like String s = "A string";.
There is no string type, and the char* type that is
used for strings does NOT do what you might ex-
pect given this kind of an assignment.

wWe'll revisit these issues in more detail later in the
course.

Type Conversions

C is very flexible with type conversions.

e If an operator has operands of different types, they
are converted according to a small number of rules.

e Automatic conversions occur when a “narrower”
operand can be converted into a “wider one” . EXx-
ample: adding a short and a long will cause the
short to be converted automatically. (See rules on
K&R, p. 44 for details.)

e Keep in mind that a char is just a small integer, so
you can do arithmetic operations: e.g., ’c’ - ’a’ is
2. (No type conversion required!)

Conversions also occur when you try to assign a variable
of one type to another. Be careful — the new assigned
variable might be different!

e Example: if x is float and i is int, then the as-
signment i = x will truncate any fractional part of
X.

Casting

You can explicitly cast a variable of one type to be a
variable of another type.

e T his is useful if you aren’t sure how conversion will
work, or you want to force conversion to happen in
a specific way.

e Example:

int a=15, b=10;
double x;

x =a / b;
/* x is now 1.0 *x/

x = (double) a / (double) b;
/* x is now 1.5 */

e Casting ensures floating point division rather than
integer division (which truncates the result so that
the type is still integer).

10

Enumeration constants

e An enumeration is a way to specify a list of constant
integer values:

enum color { red, blue, green };

e Unless specified explicitly, the first name in an enum
has value 0O, the second one 1, etc.

e Example.

void main() {
enum color { red, blue, green };
int fave;
printf("O=red,1=blue,2=green");
printf ("Enter the number of your favorite:");
scanf("%d", &fave);
if(fave == red) {
printf("Red is also my favorite.\n");

¥

e When explicit values are provided, unspecified val-
ues continue in progression from the most recent
specified value.

enum month { JAN = 1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, 0OCT, NOV, DEC };

11

Using printf

e Printing a float

— Simple form:
printf("%Ef", 3.141592653);

— Fancy form:
printf("%6.2f", 3.141592653);

...result: two spaces followed by 3.14

6 specifies minimum field width: at least 6 char-
acters will be printed, with spaces added if nec-
essary

2 specifies maximum number of digits to be
printed after the decimal point

e Printing an int as an octal number
printf("%o\n", 17);

...result: 21

e Printing an int as a hexadecimal number
printf("%x\n", 31);
...result: 1f

Use %X for upper-case letters

12

Operators

e Recall the relational operators (>, >=, <, <=), equal-
ity operators (==, !'=), and the logical operators
(v, &&, 11).

e C has a number of arithmetic operators.
— Assignment operator: =

— Binary arithmetic operators: +, -, *, /, %

x Can be applied to int, float, Or double, ex-
cept for % which can only be applied to ints.

x % is the "modulus” or “mod"” operator: a % b
is equal to the remainder when a is divided
by b. We won’'t worry about what happens
on non-positive values (implementation de-
pendent). Example: 8 % 3 == 2.

— Unary arithmetic operator: -. Example:
X = —y;
— Shortcut operators: +=, -=, x=, /=

X += 2; /* equivalent to x = x + 2; */
X *= 2; /* equivalent to x = x * 2; */

— Increment/decrement operators: ++, --

x++; /* acts like x = x + 1; */
x-—; /* acts like x = x - 1; %/

13

+-+ and — —: tricky expressions

Both x++ and ++x are expressions. The expression
x++ acts like x, and ++x acts like the expression x+1.

What's special is the side effect: evaluating these
expressions causes x to be incremented by 1.

int a = 10, b, c;
b = a++; /* a is now 11, b is 10 */
c = ++b; /* a, b, c are all 11 x*/

For clarity, try not to mix ++ or —-- into complicated
expressions.

Note that the expression that ++ or -- is applied to
must be an /value, e.g. a variable.

(x + 2)++; /* no good! */

— The left side of an assignment statement must
be an Ivalue; hence the “I" in “lvalue’ .

X + 2 =8; /* no good! */

— The result of applying ++ or —-- to an lvalue is
NOT an lvalue.

(x++)++; /* no good! */

14

Bitwise operators

e Six operators for bit manipulation which can only
be applied to integral operands (e.g., variables of
type int or char):

— Bitwise AND (&)

— Bitwise inclusive OR (I)
— Bitwise exclusive OR (")
— Left shift (<<)

— Right shift (>>)

— One's complement (%)
e All binary except for one’s complement.

e Left shifting fills vacated bits with zero. But be
careful! Right shifting a signed quantity (e.g. int
variable) may fill vacated bits with sign bits on some
machines.

e Can be used with shortcut operators, e.g. |=, ~=,
<<=, etc.

e See PCP, Chapter 11 for more details. (We proba-
bly won't use bit operations again in this class, but
it's good to know about them.)

15

Order of Evaluation

How are expressions with many operators evaluated?

Two considerations:

e Precedence

— How is 1 + 2 x 3 evaluated? Is it (1 + 2) * 3,
orl1 + (2 x 3)7

— It's the latter: the * operator has higher prece-
dence than the + operator. Parentheses must
be used if we want the addition to be performed
first.

e AsSsociativity

— What about expressions containing operators at
the same precedence level? E.g., (12 / 6 * 2)
or (6 -3 -1)7

— These parseas ((12 / 6) * 2) and ((56 - 3) - 1):
they are left associative. (Most operators are
left associative.)

See table on p. 53 of K&R.

What about x +=y |= z; 7

16

True or false?

void main() {
int a = -2, b=-1, ¢ = 0;

if(a<b<c)
printf("True.\n");
else
printf("False.\n");

if (a >= b >= c¢)
printf("True.\n");
else
printf("False.\n");

e Be careful! Use parentheses!

17

