
CS113: Lecture 2

Topics:

• Relational, Equality, and Logical operators

• Decision and Control statements (e.g. if-else, switch,
while, etc.)

1

if statement

• Basic form:

if(condition)
statement;

(Statement executed if, and only if, the condition
is “true”)

• Example (fragment):

if(5 > 3)
printf("5 is strictly greater than 3.\n");

• The statement can be a block of code containing
more than one statement - enclosed in curly braces:

if(a > 0) {
printf("a is positive.\n");
printf("In case you didn’t hear me,

I said that a is positive.\n");
}

• Be careful! What happens here?

a = -5;
if(a > 0)

printf("a is positive.\n");
printf("In case you didn’t hear me,

I said that a is positive.\n");

2

Relational and Equality operators

• In actuality, expressions like “5 > 3” are evaluated
to integer values: 1 for true, 0 for false. Thus the
program

void main() {
printf("Result of 1 > 2: %d\n", 1 > 2);
printf("Result of 6 < 8: %d\n", 6 < 8);

}

gives as output:

Result of 1 > 2: 0
Result of 6 < 8: 1

• Relational operators: >, >=, <, <=

• Equality operators: ==, !=

– IMPORTANT! == (two equals) versus = (one
equal) is an extremely common source of pro-
grammer errors in C. One equal, =, is an assign-
ment operator.

3

More on our friend if

• if executes the statement (or statement block) after
it when the specified condition is non-zero.

• Thus, the following fragment prints: Hi!

if(18)
printf("Hi!\n");

if(0)
printf("Bye.\n");

• What does the following fragment do?

int a;
printf("Enter a number:");
scanf("%d", &a);
if(a = 3)

printf("You typed 3.\n");

• Notice that there is no semicolon after the condition
of an if statement.

4

Conditional Expressions

Consider the following code:

if (a < 13)
b = 3;

else
b = 18;

C has a construct that lets you encapsulate the choice
as part of the expression assigned to the variable b. The
following code is equivalent:

b = (a < 13) ? 3 : 18;

The general form is test ? expr1 : expr2. The test test
is evaluated first. If it is nonzero, the entire expression
evaluates to expr1, otherwise it evaluates to expr2.

Since the whole term is itself an expression, we can nest
conditional expressions:

grade = (percent > 80) ? ’A’ :
((percent > 70) ? ’B’ : ’C’);

5

Logical Operators

• &&, || (logical AND, logical OR) are binary opera-
tors: two arguments.

• expression1 && expression2 evaluates to 1 (“true”)
if both expressions are non-zero, otherwise evalu-
ates to 0 (“false”).

• expression1 || expression2 evaluates to 1 (“true”)
if either or both expressions are non-zero, otherwise
evaluates to 0 (“false”).

• !expression evaluates to 1 (“true”) if the expression
is zero, otherwise evaluates to 0 (“false”).

• A XOR B: ((!A && B) || (A && !B))

• Example

if((3 >= 5) || !(2 > 4)) {
printf("The OR is true.\n");

}
if((3 >= 5) && !(2 > 4)) {

printf("The AND is true.\n");
}

• “Short-circuit evaluation” used.

(The !(2 > 4) in second if not evaluated.)

6

if-else

• Basic form:

if(condition)
statement1;

else
statement2;

• As before, each statement can be either a single
command (terminated with a semicolon), or a block
of commands delimited by curly braces.

• Example.

if((year % 4 == 0 && year % 100 != 0) ||
(year % 400 == 0)) {
printf("%d is a leap year\n", year);

} else {
printf("%d is not a leap year\n", year);

}

7

More on if-else

• Is there a difference between

if(condition)
statement1;

else
statement2;

and

if(!condition)
statement2;

else
statement1;

• Common usage for a series of if-elses:

if(expression1)
statement1;

else if(expression2)
statement2;

else if(expression3)
statement3;

...
else

statement;

The temptation is to continually indent.

Under what conditions is statement3 executed?

8

An example

• Example.

void main() {
int num;
printf("Please enter a positive integer:\n");
scanf("%d", &num);

if(num % 3 == 0)
printf("%d is divisible by 3.\n", num);

else if(num % 2 == 0)
printf("%d is divisible by 2, but not 3.\n",

num);
else

printf("%d is not divisible by 3 nor 2.\n",
num);

}

9

The “dangling else problem”

• The following code is ambiguous. Never write any-
thing like this!

if(a == 3)
if(a == 5)

printf("a is 5.\n");
else

printf("Doh!\n");

• Instead, use braces:

if(a == 3) {
if(a == 5)

printf("a is 5.\n");
else

printf("Doh!\n");
}

10

switch statement

• Similar to a chain of if/else statements, but more
restricted in terms of functionality.

• Useful when one wants to branch based on the value
of an expression.

• General form:

switch(expression) {
case constant1:

statement1;
[break;]

case constant2:
statement2;
[break;]

...
default:

statement;
[break;]

}

11

The fall-through property

• Use breaks! What happens if the breaks are re-
moved?

switch(num) {
case 1:

printf("Behind Door 1 is nothing.\n");
break;

case 2:
printf("Behind Door 2 is a goat.\n");
break;

case 3:
printf("Behind Door 3 is a pot of gold.\n");
break;

}

• Sometimes we can exploit the fall-through property:

switch(month) {
case 1: case 3: case 5: case 7:
case 8: case 10: case 12:

printf("31 days.\n");
break;

case 2:
printf("28 or 29 days.\n");
break;

default:
printf("30 days.\n");

}

12

while statement

• Nice and simple:

while(condition)
statement;

• A break statement inside the statement block causes
the loop to be stopped.

• A variant:

do
statement;

while(expression);

• The statement is always executed at least once.
Equivalent to:

statement;
while(expression)

statement;

13

while example

• Keeping a running sum.

void main() {
int sum = 0, number = 0;
while(number != -1) {

sum += number;
printf("The running sum is: %d\n", sum);
printf("Enter a pos. integer (-1 quits):");
scanf("%d", &number);

}
}

• Another way to do it.

void main() {
int sum = 0, number;
while(1) {

printf("The running sum is: %d\n", sum);
printf("Enter a pos. integer (-1 quits):");
scanf("%d", &number);
if(number == -1) break;
sum += number;

}
}

Note: while(1) is conventional for “infinite” loops

14

for statement

• General form:

for(initial-stmt; condition; iteration-stmt)
body-stmt;

• Equivalent to:

initial-stmt;
while(condition) {

body-stmt;
iteration-stmt;

}

• break can also be used, within the body-stmt.

• break in general applies to innermost loop (while,
do/while, for) or switch statement.

• continue statement (not frequently used) causes
the next iteration to be executed - jumps to condition-
test of innermost loop (while, do/while) or next
increment statement (for).

15

for example

• Summing the first ten positive even numbers (2, 4,
6, ..., 20).

void main() {
int i, sum = 0;
for(i = 1; i <= 10; i++)

sum += 2 * i;
printf("The sum is %d\n", sum);

}

• Another way to do it.

void main() {
int i, sum = 0;
for(i = 2; i <= 20; i += 2)

sum += i;
printf("The sum is %d\n", sum);

}

• Notice: no semicolon after the condition of the for.

16

Something new: goto statement

• General form:

statements;
...
goto label;
...
label:

code ...

• Never necessary. Almost always bad programming
practice, except ...

for(...) {
for(...) {
... /* 50th nested loop/if statement */

if(disaster)
goto error;

}
...

}
...

error:
clean up stuff

17

