
CS113: Lecture 10

Topics:

• More data types

• Command line arguments

• Odds and ends

1

Struct variants

Structs are useful for grouping related data into records,
but they may use more space for storage than is really
necessary:

struct student_struct {
char idnum; /* Only 50 students in the class */
char year; /* Freshman, sophomore, etc. */
char gender;
char credit; /* Credit or audit? */

} student;

• We use 4 chars (32 bits) when we only need 7 bits
for idnum, 2 bits for year, 1 bit for gender, 1 bit for
credit (11 bits total).

• Bit fields (or packed structures) specify the width of
the fields in a structure, forcing the program to use
the minimum amount of space to store the struct,
as constrained by memory alignment issues.

2

Bit fields

A more compact structure:

struct student_struct {
unsigned idnum : 7;
unsigned year : 2;
unsigned gender : 1;
unsigned credit : 1;

} student;

• Only int data types (unsigned or signed, but not
long) may be used in the bit field.

• This structure will probably take up 16 bits, not 11,
due to the need to align data types in appropriate
memory addresses (usually multiples of 8 bits, e.g.
16, 32, 64).

• WARNING: Bit fields will save space, but access
will probably be very slow. If you need compactness
and speed, you will probably want to use bit shift
operators on built-in data types instead.

3

Unions

Unions are special structs that overlay their contents in
memory:

union example_union {
double d; /* 8 bytes */
char c[2]; /*2 bytes */
int i; /* 4 bytes */

};

• A total of 8 bytes is used — the size of the largest
component. d will take up 8 bytes, c will overlay
the first two bytes of d, and i will overlay the first
4 bytes of d and therefore all of c.

• The union can act like any one of its component
data types, but only one at a time, and the data
stored are mutually exclusive.

• Often used when talking to device drivers and con-
trol over data alignment is important.

4

Union example

#include <stdio.h>

union example_union {
double d; /* 8 bytes */
char c[2]; /*2 bytes */
int i; /* 4 bytes */

};

void main(void) {
union example_union U;

U.i = 15; /* Now U acts like an int */
printf("%d\n", U.i); /* prints 15 */

U.c[0] = ’H’; U.c[1] = ’i’; /* U acts like char array */
printf("%c%c\n", U.c[0], U.c[1]); /* prints Hi */

U.d = 7.58930; /* U acts like a double;
overwrites H,i */

printf("%f\n", U.d); / prints 7.58930 */

printf("%c%c\n", U.c[0], U.c[1]); /* prints ??? */
}

5

Command line arguments

Alternative version of main():

int main(int argc, char *argv[]) { ... }

• Allows access to command line arguments (if in-
voked from UNIX command line, say)

• argc holds the number of command line arguments

• argv is an array of strings; the strings are the ar-
guments passed to the program on the command
line, starting with the program name, e.g.

prompt% myprogram xyz bbc -5

Then argc is 4, argv[0] is the string "myprogram",
argv[1] is "xyz", argv[2] is "bbc", and argv[3] is"-5".
Each of the strings is null terminated.

• Use the facilities in getopt.h to process standard
format command line arguments if you’re a UNIX
programmer (this is not part of standard C).

6

More about the ternary ? : operator

• Recall: A type of conditional expression. Form:

test ? expr1 : expr2

test is evaluated first. If it is non-zero (“true”),
then expr1 is evaluated, and the entire expression
has value expr1. Otherwise, expr2 is evaluated, and
the entire expression has value expr2.

• Example. Instead of

if(a > b)
z = a;

else
z = b;

We can write

z = (a > b) ? a : b;

• A little trick...

Can something like the following be done (without
duplicating complex_expression)?

((condition) ? a : b) = complex_expression;

Yes!

*((condition) ? &a : &b) = complex_expression;

7

The comma operator

• Form: expr1, expr2.

• Most common use: in for loop.

void reverse(char *s)
{

int temp, i, j, len;
len = strlen(s);
for(i = 0, j = len - 1; i < j; i++, j--)
{

temp = s[i];
s[i] = s[j];
s[j] = temp;

}
}

• Evaluated left-to-right. All side-effects resulting
from evaluation of left expression are completed be-
fore right expression evaluated.

• Type and value of the result are the type and value
of the right operand.

• Example:

int a = 3, b = 6, c;
c = (a++, (b++) + a);
printf("a is %d, b is %d, c is %d.\n", a, b, c);

(Prints 4, 7, 10.)

8

Note on array notation

• Does the seemingly insane expression 5["0abcdefgh"]
make sense?

• Yes, it does! Array subscripting in C is “commuta-
tive”, i.e., a[e] is identical to *((a) + (e)) for any
two expressions a and e.

• Thus, the following are all equal.

a[e]
*((a) + (e))
*((e) + (a))
e[a]

• ...and 5["0abcdefgh"] is equal to "0abcdefgh"[5] ,
which is ’e’.

9

Loop Unrolling

Which is faster?

for(i = 0; i < 8 * n; i++)
{

a[i] = i;
}

for(i = 0; i < n; i += 8)
{

a[i] = i;
a[i+1] = i+1;
a[i+2] = i+2;
a[i+3] = i+3;
a[i+4] = i+4;
a[i+5] = i+5;
a[i+6] = i+6;
a[i+7] = i+7;

}

Tom Duff (while at Lucasfilm) wanted to copy chunks
memory, quickly. Original code:

send(to, from, count)
register short *to, *from;
register count;
{

do
*to = *from++;

while(--count>0);
}

10

Duff’s Device

“Many people (even bwk?) have said that the worst
feature of C is that switches don’t break automatically
before each case label. This code forms some sort of
argument in that debate, but I’m not sure whether it’s
for or against.”

– Tom Duff

send(to, from, count)
register short *to, *from;
register count;
{

register n=(count+7)/8;
switch(count%8){

case 0: do{ *to = *from++;
case 7: *to = *from++;
case 6: *to = *from++;
case 5: *to = *from++;
case 4: *to = *from++;
case 3: *to = *from++;
case 2: *to = *from++;
case 1: *to = *from++;

}while(--n>0);
}

}

11

Curiosity: A self-reproducing program

Note that 34 is the ASCII value of the double-quote
character.

char*s="char*s=%c%s%c;main(){printf(s,34,s,34);}";
main(){printf(s,34,s,34);}

(There should be no carriage return in the middle of the
program; one was inserted for the sake of formatting.)

Known as a “quine” after logician and philosopher of
language Willard Van Ormand Quine, who studied (among
other things) indirect self-reference.

Think about the phrase “yields falsehood when appended
to its own quotation”. True or false?

12

