
Welcome to...

CS113: Introduction to C

Instructor: Erik Sherwood

E-mail: wes28@cs.cornell.edu

Course Website:

http://www.cs.cornell.edu/courses/cs113/2006sp/

The website is linked to from the courses page of the
CS department.

Assignments, lecture slides, etc. will be posted on the
course website.

1

Registration Details

The course meets from January 23 - February 17, MWF,
12:20 - 1:10.

The add/drop deadline is January 30. THIS IS SOON!

2

Administration

• Lecture slides and readings are posted to the course
website, as are assignments, announcements, etc.

• Check the website regularly because that’s where
I’ll post stuff like corrections, hints for homeworks,
etc.

• Class runs for four weeks, three meetings a week.

• Office hours: Wednesday, 2:30-4 (tentative), or by
appointment

• Prerequisite: CS100 or equivalent experience (e.g.,
at a different college or in an advanced high school
course)

• All auditors welcome

• Course goal: to cover all major features of the
C programming language, to the extent that stu-
dents can subsequently learn about any features not
discussed by reading a standard reference such as
“The C Programming Language” by Kernighan and
Ritchie.

3

Assignments, etc.

• There will be three programming assignments, due
Mondays by 5 p.m. The last assignment will be
longer and count for more; you will have more time
to complete it.

– Turn in a printout of your program (no sample
data necessary), AND e-mail the source code
(the .c files) to wes28@cs.cornell.edu

– DO NOT just e-mail me your source code. YOU
MUST turn in a printout of your source code at
Friday’s class or in my mailbox in Rhodes 657.

• There is one non-programming assignment, due im-
mediately.

• We’ll have one quiz.

• Please come to class! We’ll cover new material
every time, and there’s a lot to get through in four
weeks. If you can’t make a lecture, let me know
and I’ll tell you if you missed anything big.

• Please let me know if you anticipate that you’ll have
problems attending lectures or turning assignments
in on time.

4

More Course Info.

• Grades on Assignments: check plus (exceptional),
check (acceptable), check minus, X (insufficient ef-
fort)

– Turning in a program that compiles and is neatly
formatted can help you avoid an X. (But this is
not necessarily sufficient!)

• Grading for course: S/U only.

– You are guaranteed an “S” if all assignments
completed with a grade of “check”.

– If you get an “X” on two or more assignments,
do poorly on the quiz, and have attendance
problems, you’ll probably get a “U”.

– In-between cases will be handled at my discre-
tion. I’ll let you know if there’s a problem though,
so you shouldn’t worry.

• Two textbooks: “Practical C Programming” by
Steve Oualline and K&R. Both are recommended;
neither is strictly necessary, especially if you have
high-speed Web access so you can look stuff up.

• You may use any C compiler. (I recommend gcc,
which comes with UNIX/Linux/MacOS X.) Infor-
mation for using CodeWarrior is on the website.

5

A Note on Collaboration

• Collaboration: You may discuss ideas on a high level
with others, but all code must be your own. You
should understand everything that you turn in.

• You can help another student debug his or her code,
but you should not write any code for anyone else,
and no one else should write code for you.

• Information on the Code of Academic Integrity is
available on the website. In a self-selecting, non-
competitive course like this, the potential payoffs
from cheating are extremely low, even though the
risks involved are fairly high.

6

“A language that doesn’t affect the way you think about
programming is not worth knowing.”

– Alan Perlis

Why Learn C?

Learning C will help you to master programming con-
cepts that higher-level languages like Java don’t require
you to worry about, such as:

• Pointers: how do you know where your objects are
stored in memory?

• Function invocations: what happens when you call
a function?

• Dynamic memory allocation: where does the mem-
ory for a new object come from?

These concepts all revolve around the issue of memory.
C forces you to understand how your programs deal with
run-time memory – because if you don’t, you’ll regularly
make programming errors that can crash your whole
program in nasty ways.

7

“C is quirky, flawed, and an enormous success.”

– Dennis Ritchie

Meet the C programming language

• More about C:

– Very good for writing fast code, especially code
that needs to have very explicit control over how
memory is used.

– Good for writing programs that do system-level
tasks (e.g., drivers, operating systems, etc.)

– “Least common denominator”: good building
block for learning other languages. Subset of
C++, similar to Java.

– Portable - compilers available for most any plat-
form!

• ANSI C standard - aim for ANSI C compliance.

• C is almost always compiled to machine code. (Con-
trast with Java.)

8

The canonical “first C program”
#include <stdio.h>

void main() {
printf("Hello, world!\n");

}

Notice:

• Every program you’ll write for this class will “in-
clude” the standard functions functions in “stdio.h”.
Functions like printf (which is in stdio.h) aren’t
part of the core C language, so you need to include
them explicitly.

• All C programs must have a main() function; this is
the first function invoked. The program terminates
when this function terminates.

• printf is a function that prints formatted output

• void indicates that the program itself returns no
value. Don’t worry about this too much now...

• But: note that some compilers insist on the dec-
laration int main(), in which case the statement
return 0; should be added to end of program, or
anywhere else where you want the program to end.
(Returning “0” indicates that the program ended
successfully.)

9

Another example

#include <stdio.h>

void main() {
int x = 1, y;
int sum;
y = 3;
sum = x + y; /* evaluates right hand side,

places value in variable sum */
printf("%d plus %d is %d\n", x, y, sum);

}

10

Some comments on comments
and keywords

• Comments

– Any string of symbols placed between the de-
limiters /* and */.

– Can span multiple lines

– Can’t be nested (according to ANSI C stan-
dard)! Be careful.

∗ Some development environments have an op-
tion that allows one to nest comments.

∗ A curiosity: one can actually write a program
that detects whether or not comments are
nested or not!

– Example: /* /* /* Hi, I’m a comment */

• Keywords

– Reserved words that cannot be used as variable
names

– Examples: break, if, else, do, for, while, int,
void (exhaustive list in K&R, p192)

– Can be used within comments

11

Reading integers from standard input

#include <stdio.h>

void main() {
int x, y;
int product;

printf("Enter an integer: ");
scanf("%d", &x);
printf("Enter another integer: ");
scanf("%d", &y);

product = x * y;

printf("%d times %d is %d\n", x, y, product);
}

• scanf is like printf, except it reads from standard
input instead of writing to it

• scanf is a dangerous, bad function, but you can use
it for now, in this limited way, to read integers

• &x is a reference to the variable x rather than the
value of x itself. You need to pass a reference so
that scanf can modify the variable x. (Much more
on this later in the course – don’t worry about it
now.)

12

Summing the numbers 1 through 10.

#include <stdio.h>

void main() {
int i = 1, sum = 0;

while(i <= 10) {
sum = sum + i; /* shortcut: sum += i; */
i = i + 1; /* shortcut: i++; */

}

printf("The sum is %d\n", sum);
}

• Note that the function is split into two parts: the
variable declarations (and sometimes initializations),
and the rest of the function.

• All C functions require variable declarations at the
start of the function.

• This is different from, say, Java.

13

Summing the numbers 1 through 10.

#include <stdio.h>

void main() {
int i = 1, sum = 0;

for(i = 1; i <= 10; i++) {
sum = sum + i;

}

printf("The sum is %d\n", sum);
}

General form of a for loop:

for(initial-stmt; condition; iteration-stmt)
body-stmt;

What happens?

1. Initialization is performed.

2. Condition is checked; if false, loop terminates. Oth-
erwise...

3. Body is performed, followed by the iteration state-
ment.

4. Then, the condition is checked again, and so forth.

14

Equality testing.

#include <stdio.h>

void main() {
int a, b;

printf("Enter a number: ");
scanf("%d", &a);
printf("Enter another: ");
scanf("%d", &b);

if(a == b) {
printf("They’re equal!\n");

}
else {

printf("They’re not equal.\n");
}

}

Note:

• Double equals used to compare ints

• “else” portion of “if” optional

15

Bracing Styles
Four widely used bracing styles:

• 1TBS: One True Bracing Style - used by K & R,
and my personal preference

for(j = 0; j < 10; j++) {
printf("%d", j);

}

• Allman

for(j = 0; j < 10; j++)
{

printf("%d", j);
}

• Whitesmith

for(j = 0; j < 10; j++)
{
printf("%d", j);
}

• GNU

for(j = 0; j < 10; j++)
{

printf("%d", j);
}

Most important rule of style: Be consistent.

16

Exponentiation

void main() {
int base, exponent, result;
printf("Enter the base:");
scanf("%d", &base);
printf("Enter the exponent:");
scanf("%d", &exponent);

for(result = 1; exponent > 0; exponent--) {
result *= base;

}
printf("%d\n", result);

}

17

Exponentiation, the sequel

void main() {
int base, exponent, result = 1;
printf("Enter the base:");
scanf("%d", &base);
printf("Enter the exponent:");
scanf("%d", &exponent);

while(exponent > 0) {
if(exponent % 2 == 1) result *= base;
base *= base;
exponent /= 2;

}
printf("%d\n", result);

}

Note:

• Trickier: maintain invariant that result times base
to the exponent power is the desired value

• Faster algorithm

18

