CS113: Lecture 4

Topics:
e Functions

e Function Activation Records

Why functions?

e Functions add no expressive power to the C lan-
guage in a formal sense.

e Why have them?

— Breaking tasks into smaller ones make them
easier to think and reason about

— Facilitates code re-use (not just within one pro-
gram, but in others)

— Makes it possible to hide away details of one
task from the rest of program, which does not
care

e The ideal function performs a single, well-defined
task: testing if a given number is prime, computing
the number of days in a given month, etc.

— The less specific a function is to the program
in which it is initially used, the more reusable it
tends to be

— On the other hand, don’t waste lots of time
writing a general function if it’s not needed for
your task. Code reuse is nice, but atypical in
practice.

Example #1: A simple function

int power(int base, int exp) {

}

int i, p = 1;

for(i = 1; i <= exp; i++)
p *= base;

return p;

Anatomy of a function:

Function has the general form

return-type function-name(parameters) {
declarations
statements

Function definitions can appear in any order

Names used by power (base, exp, p) are “local”’ to
power, and are not visible to any other functions.

DO NOT USE GLOBAL VARIABLES.

If the return-type iS non-void, every path of execu-

tion must end in a return statement

If the return-type is void, then return; can be used

to terminate the function at any point

Example #1 in context

int power(int base, int exp);

void main() {
int 1 = 3, j = 4;
printf("/d raised to the power %d is %d.\n",
i, j, power(i, j));
}

int power(int base, int exp) {
int i, p = 1;
for(i = 1; i <= exp; i++)
p *= base;
return p;

}

Notes:

e int power(int base, int exp); at the top isa func-
tion prototype; tells compiler what kind of function
power iS, sO that it can check function calls

e Distinction between

— parameters of a function — variables in parenthe-
sized list (for power, parameters are base, exp),
and

— arguments of a function call — the actual values
passed to the function (here, 3, 4)

Yet another example

void print_square(int a);
int square(int a);

void main() {
int 1i;
for(i = 1; i <= 10; i++)
print_square(i);

}

void print_square(int a) {

printf("The square of ’d is: %d\n", a, square(a));
}

int square(int a) {
return(a * a);

}

Call by value

In C, all arguments to functions are passed by value:
the function is given copies of the arguments, and
not the originals

A called function is given the values of its argu-
ments in temporary variables, not the originals

A called function cannot directly alter a variable in
the calling function — it can only alter its private,
temporary copy

Example.

void increment(int a) {
at+;

}

void main() {
int b = 3;
increment(b);

printf("%d\n", b);
}

Call by value: an asset?

K & R says, “Call by value is an asset ... not a liability.”
Here’'s one example:

int power(int base, int n) {
int i, p;
p=1;
for(i = 1; i <= n; i++)
P = p * base;
return(p);

}

which is equivalent to a program where we “use up” the
function argument n:

int power(int base, int n) {
int p;
for(p=1; n > 0; n——)
p = p * base;
return(p);

}

What's the problem here?

#include <stdio.h>

void get_age(int age);

void main() {

int age;

get_age(age);

printf("Your age is: %d\n", age);
}

void get_age(int other_age) {
printf("Please enter your age.\n");
scanf ("/d", &other_age);

}

The value of other_age gets destroyed when the function
get_age returns!

Activation Records in C: A First Look

A high-level view of memory:

s ™
get_age() 1
activation record
other_age
function call
L) creates the
new record
s ™
main()
L »
activation record o
age
N J

e C is call-by-value, so a new other_age memory lo-
cation gets created, and when the function gets
called, the argument to the function gets copied
into it.

e When get_age() finishes, its activation record is de-
stroyed. so the value stored in other_age is lost.

e Meanwhile, the age variable in function main is still
uninitialized...

Activation Records

More formally,

e An activation record is a chunk of memory that is
allocated by the program every time a function is
invoked.

e It includes space (in memory) for the parameters of
the function, as well as all the variables declared by
the function.

e [he parameters are initialized by the arguments of
the function.

e T he activation record also includes a “pointer” to
the calling function, so the program knows where
to go when the function finishes.

e T he activation records form an execution stack,
with main() at the bottom and the current func-
tion at the top.

Other languages, like Java, also include activation records.
It isn’'t strictly necessary to understand how they work
to use the language effectively, but with a low-level lan-
guage like C it definitely pays off.

10

An example of a recursive function

Because a fresh activation record is created each time a
function is called, C supports recursion, where a function
calls itself:

int fact(int number);

void main() {

int result;

result = fact(4);

printf("4 factorial is %d\n", result);
}

int fact(int number) {
if (number == 0)
return 1;
/* else *x/
return(number * fact(number - 1));

11

Activation records with recursion

Here's what the execution stack looks like after the last
call to fact() in the previous program, but before it
returns:

fact() 0
activation record number
J
p
fact() 1
activation record number
J
N\
fact() 2
activation record number
J
N\
fact() 3
activation record number
J
N\
fact() 4
activation record number
J
N\
main() 7?
activation record result

12

Apples and Oranges

#include <stdio.h>

void print_fruits(int oranges, int apples);

void main() {
int apples, oranges;
printf("How many apples do you have?");
scanf ("/d", &apples);
printf("How many oranges do you have?");
scanf ("/d", &oranges);
print_fruits(apples, oranges);

}

void print_fruits(int oranges, int apples) {
printf("You have ’d oranges and ’d apples.",
oranges, apples);

13

How old are you?

#include <stdio.h>
int get_age(int year);

void main() {

int age, year;

year = 0;

age = get_age(year);

printf("Your age is: %d\n", age);
}

int get_age(int year) {
printf("What year were you born?");
scanf ("%d", &year);
return(2002 - year);

}

14

Play again?

int play_again() {
char response;
printf("Would you like to play again (Y/N)?");
scanf ("/c", &response);
if(response == Y’)
return(1);
else if(response == ’N’)
return(0);

15

Tallying scores

#include <stdio.h>
void do_one_score(int total);

void main() {
int total, 1i;
total = O;
for(i = 1; i <= 10; i++)
do_one_score(total);

}

void do_one_score(int total) {
int score;
printf("Enter a score: ");
scanf ("%d", &score);
total += score;

16

