
CS113: Lecture 3

Topics:

• Variables

• Data types

• Arithmetic and Bitwise Operators

• Order of Evaluation

1

Variables

Names of variables:

• Composed of letters, digits, and the underscore
(” ”) character. (NO spaces; use underscore in-
stead.)

• First character must be a letter.

• At least the first 31 characters matter – after that,
they may not.

• You can’t use keywords (like if, else, etc.) for
variable names.

Similar rules for naming functions, etc.

2

Data types

• C’s basic types and typical sizes:

– char - a single byte, capable of holding one in-
teger/character (8/16 bits)

– int - an integer (16/32 bits)

– float - single-precision floating point (32 bits)

– double - double-precision floating point (64 bits)

– NOTE: there is no basic “string” type.

• Actual size is compiler- and machine-dependent!
(You can find out what the size is if you need to.)

• Qualifiers (e.g. unsigned, long) can be applied.

– An integer can be short, long, and even long long

– If it’s unsigned it means that only positive inte-
gers can be represented. (If you try to do any
operations with unsigned integers and negative
integer constants, weird things might happen.)

– The type unsigned long long int lets you repre-
sent very large positive integers!

– Don’t worry too much about all the different
types unless you need to.

3

Variable declarations

• Variables must be declared at the start of a func-
tion, before use.

int lower;
int upper;
int step;
char c;
char d;

• Variables with the same type can be grouped to-
gether:

int lower, upper, step;
char c, d;

• Variables can also be initialized in the declaration.

int lower = 0, upper = 8, step = 1;
char c = ’f’, d = ’z’;

• What happens if a variable is not initialized and
then used?

void main() {
int a;
printf("The value of a is: %d\n", a);

}

4

Examples of Constants

• Integer constant: 1234

• long int constant: 12345789 or 123456789L

• Integers can be specified in octal (leading zero) or
hexadecimal (leading 0x or 0X): 037, 0x1f.

• Floating-point constant: 123.4

5

Character constants

• All characters are represented as integers (usually
signed), and can be treated as integers.

• Escape codes correspond to characters, for use in
single-quotes:

– Examples: \n (newline), \\ (backslash), \" (dou-
ble quote)

– Example use: char a = ’\n’;

• Variables of type char can be thought of as either
a character of an integer.

printf("%c", ’a’); /* a is printed */
printf("%d", ’a’); /* 97 is printed */
printf("%c", 97); /* a is printed */
printf("%d", 97); /* 97 is printed */

• Lower-case letters, upper-case letters, digits “con-
secutive”

’a’ == 97, ’b’ == 98, . . ., ’z’ == 122
’A’ == 65, ’B’ == 66, . . ., ’Z’ == 90

’0’ == 48, ’1’ == 49, . . ., ’9’ == 57

• Some more examples of the integer values corre-
sponding to character constants:

’&’ == 38, ’*’ == 42, ’\n’ == 10, ’\\’ == 92, . . .

6

char Example

void main() {
char i;
printf("Here’s the alphabet, in lower-case:\n");
for(i = 97; i <= 122; i++) {

printf("%c", i);
}
printf("\n\nHere’s the alphabet, in upper-case:\n");
for(i = 65; i <= 90; i++) {

printf("%c", i);
}

}

void main() {
char i;
printf("Here’s the alphabet, in lower-case:\n");
for(i = ’a’; i <= ’z’; i++) {

printf("%c", i);
}
printf("\n\nHere’s the alphabet, in upper-case:\n");
for(i = ’A’; i <= ’Z’; i++) {

printf("%c", i);
}

}

7

String constants

Strictly speaking, there is no string type, so there can’t
be any string constants. (A string is represented as an
array of characters.)

Fortunately, C lets us deal with strings as if they were
constants, so that they can be passed to functions that
do things with strings. Just put the string in double-
quotes:

• Example: "A string" is a string.

• The statement printf("A string"); would print
that string.

• You’ll never see anything like String s = "A string";.
There is no string type, and the char* type that is
used for strings does NOT do what you might ex-
pect given this kind of an assignment.

We’ll revisit these issues in more detail later in the
course.

8

Type Conversions

C is very flexible with type conversions.

• If an operator has operands of different types, they
are converted according to a small number of rules.

• Automatic conversions occur when a “narrower”
operand can be converted into a “wider one”. Ex-
ample: adding a short and a long will cause the
short to be converted automatically. (See rules on
K&R, p. 44 for details.)

• Keep in mind that a char is just a small integer, so
you can do arithmetic operations: e.g., ’c’ - ’a’ is
2. (No type conversion required!)

Conversions also occur when you try to assign a variable
of one type to another. Be careful – the new assigned
variable might be different!

• Example: if x is float and i is int, then the as-
signment i = x will truncate any fractional part of
x.

9

Casting

You can explicitly cast a variable of one type to be a
variable of another type.

• This is useful if you aren’t sure how conversion will
work, or you want to force conversion to happen in
a specific way.

• Example:

int a=15, b=10;
double x;

x = a / b;
/* x is now 1.0 */

x = (double) a / (double) b;
/* x is now 1.5 */

• Casting ensures floating point division rather than
integer division (which truncates the result so that
the type is still integer).

10

Enumeration constants

• An enumeration is a way to specify a list of constant
integer values:

enum color { red, blue, green };

• Unless specified explicitly, the first name in an enum
has value 0, the second one 1, etc.

• Example.

void main() {
enum color { red, blue, green };
int fave;
printf("0=red,1=blue,2=green");
printf("Enter the number of your favorite:");
scanf("%d", &fave);
if(fave == red) {

printf("Red is also my favorite.\n");
}

}

• When explicit values are provided, unspecified val-
ues continue in progression from the most recent
specified value.

enum month { JAN = 1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC };

11

Using printf

• Printing a float

– Simple form:

printf("%f", 3.141592653);

– Fancy form:

printf("%6.2f", 3.141592653);

...result: two spaces followed by 3.14

6 specifies minimum field width: at least 6 char-
acters will be printed, with spaces added if nec-
essary

2 specifies maximum number of digits to be
printed after the decimal point

• Printing an int as an octal number

printf("%o\n", 17);

...result: 21

• Printing an int as a hexadecimal number

printf("%x\n", 31);

...result: 1f

Use %X for upper-case letters

12

Operators

• Recall the relational operators (>, >=, <, <=), equal-
ity operators (==, !=), and the logical operators
(!, &&, ||).

• C has a number of arithmetic operators.

– Assignment operator: =

– Binary arithmetic operators: +, -, *, /, %

∗ Can be applied to int, float, or double, ex-
cept for % which can only be applied to ints.

∗ % is the “modulus” or “mod” operator: a % b
is equal to the remainder when a is divided
by b. We won’t worry about what happens
on non-positive values (implementation de-
pendent). Example: 8 % 3 == 2.

– Unary arithmetic operator: -. Example:

x = -y;

– Shortcut operators: +=, -=, *=, /=

x += 2; /* equivalent to x = x + 2; */
x *= 2; /* equivalent to x = x * 2; */

– Increment/decrement operators: ++, --

x++; /* acts like x = x + 1; */
x--; /* acts like x = x - 1; */

13

++ and – –: tricky expressions

• Both x++ and ++x are expressions. The expression
x++ acts like x, and ++x acts like the expression x+1.

• What’s special is the side effect: evaluating these
expressions causes x to be incremented by 1.

int a = 10, b, c;
b = a++; /* a is now 11, b is 10 */
c = ++b; /* a, b, c are all 11 */

• For clarity, try not to mix ++ or -- into complicated
expressions.

• Note that the expression that ++ or -- is applied to
must be an lvalue, e.g. a variable.

(x + 2)++; /* no good! */

– The left side of an assignment statement must
be an lvalue; hence the “l” in “lvalue”.

x + 2 = 8; /* no good! */

– The result of applying ++ or -- to an lvalue is
NOT an lvalue.

(x++)++; /* no good! */

14

Bitwise operators

• Six operators for bit manipulation which can only
be applied to integral operands (e.g., variables of
type int or char):

– Bitwise AND (&)

– Bitwise inclusive OR (|)

– Bitwise exclusive OR (^)

– Left shift (<<)

– Right shift (>>)

– One’s complement (~)

• All binary except for one’s complement.

• Left shifting fills vacated bits with zero.

• Careful! Right shifting a signed quantity (e.g. int
variable) may fill vacated bits with sign bits on some
machines.

• See PCP, Chapter 11 for more details. (We proba-
bly won’t use bit operations again in this class, but
it’s good to know about them.)

15

Order of Evaluation

How are expressions with many operators evaluated?

Two considerations:

• Precedence

– How is 1 + 2 * 3 evaluated? Is it (1 + 2) * 3,
or 1 + (2 * 3)?

– It’s the latter: the * operator has higher prece-
dence than the + operator.

– Parentheses must be used if we want the addi-
tion to be performed first.

• Associativity

– What about expressions containing operators at
the same precedence level? E.g., (12 / 6 * 2)
or (5 - 3 - 1)?

– These parse as ((12 / 6) * 2) and ((5 - 3) - 1):
they are left associative. (Most operators are
left associative.)

See table on p. 53 of K&R.

16

True or false?

void main() {
int a = -2, b = -1, c = 0;

if(a < b < c)
printf("True.\n");

else
printf("False.\n");

if (a >= b >= c)
printf("True.\n");

else
printf("False.\n");

}

• Be careful! Use parentheses!

17

