
Welcome to...

CS113: Introduction to C

Instructor: Kevin O’Neill

E-mail: oneill+cs113@cs.cornell.edu

Course Website:

http://www.cs.cornell.edu/courses/cs113/2005sp/

The website is linked to from the courses page of the
CS department, and from my personal website (which

is easy to find on Google).

Assignments, lecture slides, etc. will be posted on the
course website.

1

Registration Details

The course meets from January 24 - February 18, MWF,
12:20 - 1:10.

The add/drop deadline is January 31. THIS IS VERY
SOON!

The registration code is 656-994.

2

Administration

• Lecture slides and readings are posted to the course
website, as are assignments, announcements, etc.

• There’s also a course newsgroup, cornell.class.cs113.
See the course website for more details.

• If you have questions of a general nature, please
post them to the newsgroup. Also, check the news-
group occasionally, because that’s where I’ll post
stuff like corrections, hints for homeworks, etc.

• Class runs for four weeks, three meetings a week.

• Office hours: Monday, 1:30-2:30, or by appoint-
ment

• Prerequisite: CS100 or equivalent experience (e.g.,
at a different college or in an advanced high school
course)

• All auditors welcome

• Course goal: to cover all major features of the
C programming language, to the extent that stu-
dents can subsequently learn about any features not
discussed by reading a standard reference such as
“The C Programming Language” by Kernighan and
Ritchie.

3

Assignments, etc.

• There will be four assignments, due on each Friday.

– Turn in a printout of your program (no sample
data necessary), AND e-mail the source code
(the .c files) to oneill+assignX@cs.cornell.edu,
where X is the assignment number.

– DO NOT just e-mail me your source code. YOU
MUST turn in a printout of your source code at
Friday’s class.

• Solutions to (the first three) assignments will be
discussed during the class meetings immediately fol-
lowing the due dates.

• We’ll probably have one quiz. I’ll give one lecture’s
notice and post a notice to the newsgroup.

• Please come to class! We’ll cover new material
every time, and there’s a lot to get through in four
weeks. If you can’t make a lecture, let me know
and I’ll tell you if you missed anything big.

• Please let me know if you anticipate that you’ll have
problems attending lectures or turning assignments
in on time.

4

More Course Info.

• Grades on Assignments: check plus (exceptional),
check (acceptable), check minus, X (insufficient ef-
fort)

– Turning in a program that compiles and is neatly
formatted can help you avoid an X.

• Grading for course: S/U only.

– You are guaranteed an “S” if all assignments
completed with a grade of “check”.

– If you get an “X” on two or more assignments,
do poorly on the quiz, and have attendance
problems, you’ll probably get a “U”.

– In-between cases will be handled at my discre-
tion. I’ll let you know if there’s a problem though,
so you shouldn’t worry.

• Two textbooks: “Practical C Programming” by
Steve Oualline and K&R. Both are recommended;
neither is strictly necessary, especially if you have
high-speed Web access so you can look stuff up.

• You may use any C compiler. (I recommend gcc,
which comes with UNIX/Linux/MacOSX.) Informa-
tion for using CodeWarrior is on the website.

5

A note on Collaboration

• Collaboration: You may discuss ideas on a high level
with others, but all code must be your own. You
should understand everything that you turn in.

• Information on the Code of Academic Integrity is
available on the website. In a self-selecting, non-
competitive course like this, the potential payoffs
from cheating are extremely low, even though the
risks involved are fairly high.

6

“A language that doesn’t affect the way you think about
programming is not worth knowing.”

– Alan Perlis

Why Learn C?

Learning C will help you to master programming con-
cepts that higher-level languages like Java don’t require
you to worry about, such as:

• Pointers: how do you know where your objects are
stored in memory?

• Function invocations: what happens when you call
a function?

• Dynamic memory allocation: where does the mem-
ory for a new object come from?

These concepts all revolve around the issue of memory.
C forces you to understand how your programs deal with
run-time memory – because if you don’t, you’ll regularly
make programming errors that can crash your whole
program in nasty ways.

7

“C is quirky, flawed, and an enormous success.”

– Dennis Ritchie

Meet the C programming language

• More about C:

– Very good for writing fast code, especially code
that needs to have very explicit control over how
memory is used.

– Good for writing programs that do system-level
tasks (e.g., drivers, operating systems, etc.)

– “Least common denominator”: good building
block for learning other languages. Subset of
C++, similar to Java.

– Portable - compilers available for most any plat-
form!

• ANSI C standard - aim for ANSI C compliance.

• C is almost always compiled to machine code. (Con-
trast with Java.)

8

The canonical “first C program”
#include <stdio.h>

void main() {
printf("Hello, world!\n");

}

Notice:

• Every program you’ll write for this class will “in-
clude” the standard functions functions in “stdio.h”.
Functions like printf (which is in stdio.h) aren’t
part of the core C language, so you need to include
them explicitly.

• All C programs must have a main() function; this is
the first function invoked. The program terminates
when this function terminates.

• printf is a function that prints formatted output

• void indicates that the program itself returns no
value. Don’t worry about this too much now...

• But: note that some compilers insist on the dec-
laration int main(), in which case the statement
return 0; should be added to end of program, or
anywhere else where you want the program to end.
(Returning “0” indicates that the program ended
successfully.)

9

Another example

#include <stdio.h>

void main() {
int x = 1, y;
int sum;
y = 3;
sum = x + y; /* evaluates right hand side,

places value in variable sum */
printf("%d plus %d is %d\n", x, y, sum);

}

10

Some comments on comments
and keywords

• Comments

– Any string of symbols placed between the de-
limiters /* and */.

– Can span multiple lines

– Can’t be nested (according to ANSI C stan-
dard)! Be careful.

∗ Some development environments have an op-
tion that allows one to nest comments.

∗ A curiosity: one can actually write a program
that detects whether or not comments are
nested or not!

– Example: /* /* /* Hi, I’m a comment */

• Keywords

– Reserved words that cannot be used as variable
names

– Examples: break, if, else, do, for, while, int,
void (exhaustive list in K&R, p192)

– Can be used within comments

11

Reading integers from standard input

#include <stdio.h>

void main() {
int x, y;
int product;

printf("Enter an integer: ");
scanf("%d", &x);
printf("Enter another integer: ");
scanf("%d", &y);

product = x * y;

printf("%d times %d is %d\n", x, y, product);
}

• scanf is like printf, except it reads from standard
input instead of writing to it

• scanf is a dangerous, bad function, but you can use
it for now, in this limited way, to read integers

• &x is a reference to the variable x rather than the
value of x itself. You need to pass a reference so
that scanf can modify the variable x. (Much more
on this later in the course – don’t worry about it
now.)

12

Summing the numbers 1 through 10.

#include <stdio.h>

void main() {
int i = 1, sum = 0;

while(i <= 10) {
sum = sum + i; /* shortcut: sum += i; */
i = i + 1; /* shortcut: i++; */

}

printf("The sum is %d\n", sum);
}

• Note that the function is split into two parts: the
variable declarations (and sometimes initializations),
and the rest of the function.

• All C functions require variable declarations at the
start of the function.

• This is different from, say, Java.

13

Summing the numbers 1 through 10.

#include <stdio.h>

void main() {
int i = 1, sum = 0;

for(i = 1; i <= 10; i++) {
sum = sum + i;

}

printf("The sum is %d\n", sum);
}

General form of a for loop:

for(initial-stmt; condition; iteration-stmt)
body-stmt;

What happens?

1. Initialization is performed.

2. Condition is checked; if false, loop terminates. Oth-
erwise...

3. Body is performed, followed by the iteration state-
ment.

4. Then, the condition is checked again, and so forth.

14

Equality testing.

#include <stdio.h>

void main() {
int a, b;

printf("Enter a number: ");
scanf("%d", &a);
printf("Enter another: ");
scanf("%d", &b);

if(a == b) {
printf("They’re equal!\n");

}
else {

printf("They’re not equal.\n");
}

}

Note:

• Double equals used to compare ints

• “else” portion of “if” optional

15

Bracing Styles
Four widely used bracing styles:

• 1TBS: One True Bracing Style - used by K & R,
and my personal preference

for(j = 0; j < 10; j++) {
printf("%d", j);

}

• Allman

for(j = 0; j < 10; j++)
{

printf("%d", j);
}

• Whitesmith

for(j = 0; j < 10; j++)
{
printf("%d", j);
}

• GNU

for(j = 0; j < 10; j++)
{

printf("%d", j);
}

Most important rule of style: Be consistent.

16

Exponentiation

void main() {
int base, exponent, result;
printf("Enter the base:");
scanf("%d", &base);
printf("Enter the exponent:");
scanf("%d", &exponent);

for(result = 1; exponent > 0; exponent--) {
result *= base;

}
printf("%d\n", result);

}

17

Exponentiation, the sequel

void main() {
int base, exponent, result = 1;
printf("Enter the base:");
scanf("%d", &base);
printf("Enter the exponent:");
scanf("%d", &exponent);

while(exponent > 0) {
if(exponent % 2 == 1) result *= base;
base *= base;
exponent /= 2;

}
printf("%d\n", result);

}

Note:

• Trickier: maintain invariant that result times base
to the exponent power is the desired value

• Faster algorithm

18

