Name:
(Legibly print last name, first name, middle name)

NetID: \qquad
Statement of integrity:
I did not, and will not, violate the rules of academic integrity on this exam.

Q1: (15) \qquad
Q2: (30) \qquad
Q3: (30) \qquad
Q4: (25) \qquad
Total: (100) \qquad
(Signature)

Circle your lecture time: 9:05 or 11:15

Circle your section instructor's name:

	Tuesday	Wednesday
$10: 10$		Amy Cochran / Wilson Zhou
$11: 15$		Jeff Ames / Wilson Zhou
$12: 20$	Ankit Arora	Amy Cochran / Wilson Zhou
$1: 25$	Nipun Jasuja	Amy Cochran
$2: 30$	Nipun Jasuja	Tim English
$3: 35$	Jean Rouge	Nihar Naigaonkar
$7: 30$		Ankit Arora

Instructions:

- This is a 90 -minute, closed-book exam; no calculators are allowed.
- The exam is worth a total of 100 points, so it's about one point per minute!
- Read each problem completely, including any provided code, before starting it.
- Raise your hand if you have any questions.
- Use the backs of pages or ask for additional sheets of paper as necessary.
- Clarity, conciseness, and good programming style count for credit.
- If you supply multiple answers, we will grade only one.
- Use only Matlab code. No credit for code written in other programming languages.
- Assume there will be no input errors.
- Write user-defined functions only if asked to do so. Do not write subfunctions.
- Do not use switch, try, catch, or break statements.
- You may find the following Matlab predefined functions useful:
abs, sqrt, rem, floor, ceil, rand, zeros, ones, length, size, fprintf, disp, uint8, double, char, strcmp, cell, struct
Examples: \quad rem $(5,2) \rightarrow 1$, the remainder of 5 divided by 2
floor(6.9), floor(6) $\rightarrow 6$, rounds down to the nearest integer
ceil(8.1), ceil(9) $\rightarrow 9$, rounds up to the nearest integer
zeros $(2,4) \rightarrow$ a 2 -by- 4 matrix of zeros, type double
strcmp('cat', 'Cat') $\rightarrow 0$, the two strings are not identical
cell $(3,2) \rightarrow$ a 3 -by- 2 cell array, each cell is the empty numeric vector []
struct('a', $1,{ }^{\prime} b$ ', 0) \rightarrow a structure with 2 fields: a has value 1 , b has value 0

Question 1: (15 points)

(a) Implement this function:

```
function tot = sumDiag(M)
% tot is the sum of the elements on the main diagonal of numeric square matrix M.
% A matrix is square if its number of rows and number of columns are the same.
% Assume M is not empty. For example, if M is
% [ 10 1 2 ; ...
% 0 30 99; ...
% -3 3 20 ]
% then tot is 60.
%
% THE ONLY BUILT-IN FUNCTION ALLOWED IS size.
```

(b) Complete the statement below to assign to variable ch a randomly generated capital (upper case) letter; each of the 26 letters in the alphabet should be equally likely to occur. Only the built-in functions listed on the cover page of this exam are allowed.

```
ch =
```


Question 2: (30 points)

Implement this function:

```
function newIm = enlargeImage(Im)
% Perform 2-d interpolation on all three layers of image data Im.
% Im is an nr-by-nc-by-3 array of type uint8 elements. The interpolated data is
% added between existing data points so array newIm (type uint8) is
% (2*nr-1)-by-(2*nc-1)-by-3.
% Use the simple average as the interpolated value (see example below).
% You may use built-in function zeros for initialization but otherwise
% DO NOT USE VECTORIZED CODE.
```

Hint: In 2-d interpolation, work with one dimension at a time. For example, you can first add the interpolated columns and then add the interpolated rows. For example

| One layer of M | Interpolate columns |
| :---: | :---: | | Interpolate rows |
| :---: |
| $\left[\begin{array}{rr}250 & 50 \\ 20 & 100 \\ 10 & 130\end{array}\right] \rightarrow\left[\begin{array}{rrr}250 & 150 & 50 \\ 20 & 60 & 100 \\ 10 & 70 & 130\end{array}\right] \rightarrow\left[\begin{array}{rrr}250 & 150 & 50 \\ 135 & 105 & 75 \\ 20 & 60 & 100 \\ 15 & 65 & 115 \\ 10 & 70 & 130\end{array}\right]$ |

Question 3: (30 points)

(a) Implement this function:

```
function z = overlap(diskA, diskB)
% z is 1 (true) if diskA and diskB overlap; otherwise z is 0 (false).
% diskA and diskB are each a disk structure with the following fields:
% x: x-coordinate of center of disk
% y: y-coordinate of center of disk
% radius: radius of disk
```

(b) Implement the following function to return the indices of disk triplets that overlap. Three disks form a triplet if every disk overlaps with each of the other two. Make effective use of function overlap from part (a). Your code should be efficient-avoid unnecessary iterations.

```
function idx = diskTriplets(D)
% D is a 1-d array of disk structures; each structure has fields as defined in
% part (a). Assume D has a length greater than 3.
% idx is a vector of indices indicating all triplet overlap combinations. For example,
% if disks 2, 4, and 5 form a triplet and disks 3, 4, and 6 form a triplet, idx
% should be the vector [2 4 5 3 4 6]. Other orderings of triplets are acceptable,
% however each triplet should only appear once.
```


A triplet

Not a triplet

Question 4: (25 points)

We will split a string into two parts at the first occurrence of a "marker." For example, if the original string is 'acagttaga' and the marker is 'ag', then we split the original string into these two parts: 'ac' and 'agttaga'. Note that the marker is included in the second part. Implement the following function and note the example at the bottom of the page.

```
function CA = split(M, mar)
% Split each row of matrix M into two parts at the first occurrence of the marker
% (parameter mar); each part is stored in one cell in a row of 2-d cell array CA.
% M is a matrix of characters; assume M is not empty.
% mar is a vector of characters; assume mar is not empty.
% CA is an nr-by-2 cell array of strings, where nr is the number of rows in M.
%
% THE ONLY BUILT-IN FUNCTIONS ALLOWED ARE strcmp, size, length, cell.
% HINT: For each row, first search for the position of the marker.
```

For example, if mar is the string 'ag' and M is
['aaggagtt' ; ...
'atttcag ' ; ...
'ag , ; ...
'aaaaaaa']
Then CA is a 4 -by- 2 cell array:
Row 1: column 1 is the string 'a', column 2 is the string 'aggagtt'
Row 2: column 1 is the string 'atttc', column 2 is the string 'ag '
Row 3: column 1 is the empty string, column 2 is the string 'ag
Row 4: column 1 is the string 'aaaaaaaa', column 2 is the empty string

