Question 1: (20 points)

Part (a): (12 points)
Suppose the following fragment has been executed:

```
% The first interval [a1,b1] has these endpoints:
a1 = rand(1); b1 = a1+rand(1);
% The second interval [a2,b2] has these endpoints:
a2 = rand(1); b2 = a2+rand(1);
% Assume a1, b1, a2, and b2 are unique.
```

(i) Complete the following fragment so that it prints 'Yes' if the second interval is inside the first interval and 'No' otherwise.

```
if __-_-_-_-_-_-_-_-_ a1<a2 && b2<b1
    disp('Yes')
else
    disp('No')
end
```

Picture: - [a1-[a2-b2]-b1]-
(ii) Complete the following fragment so that it prints ' No ' if the the intervals fail to intersect and 'Yes' otherwise.

```
if _-_-_-_-_--_-_-_-_- b2<a1 || b1<a2
    disp('No')
else
    disp('Yes')
end
```

Non-intersecting scenario 1: —[a1-b1]-[a2-b2]-
Non-intersecting scenario 2: - [a2-b2]-[a1-b1]-
Part (b): (8 points)
Write the loop condition below so that the fragment keeps prompting the user to enter a number until the value entered is positive and is a multiple of 3 or 5 .

```
n = input('Enter a number: ');
while
    n = input('Enter a number: ');
end
```


Solution:

```
    \(\mathrm{n}<=0| | \operatorname{rem}(\mathrm{n}, 3)^{\sim}=0\) \&\& \(\operatorname{rem}(\mathrm{n}, 5)^{\sim}=0\)
~ ( \(n>0\) \&\& (rem(n,3)==0 || rem \((n, 5)==0)\) ) \% Parentheses necessary since \&\& has
\% higher precedence than II, but
\% don't take points off this time
```


Question 2: (10 points)

Part (a): (3 points)
What is the last line of output after executing the following fragment?

```
x = 2;
y = x*3;
while x<=6 && y<=6
            x = x + 2;
    disp(x)
end
```

Answer:

8

Part (b): (7 points)
The following fragment calculates and displays the first few Fibonacci numbers. When the fragment finishes execution, which Fibonacci nubmers are stored in variables f_old, f_cur, and f_new? You can, but don't have to, evaluate the Fibonacci numbers. For example, you can write f_{4} instead of its value 3.

```
n = 2;
f_old = 1 % f(1)
f_cur = 1 % f(2)
for n = 3:5
    f_new = f_old + f_cur
    f_old = f_cur;
    f_cur = f_new;
end
```

f_old: 3, $f_{4} \quad$ f_cur: 5, $f_{5} \quad$ f_new: $\mathbf{5}, f_{5}$

Note: Need 2 out of 3 correct to get partial credit

Question 3: (20 points)

A certain bacteria has a growth rate that is dependent on the ambient temperature. At or below $32^{\circ} \mathrm{F}$, there is no growth. Above $32^{\circ} \mathrm{F}$ the growth rate follows the formula

$$
a T^{2}+b
$$

where T is ambient temperature in ${ }^{\circ} \mathrm{F}$, and $a=0.01$ and $b=-10$ are model parameters. When the temperature is very high, above $90^{\circ} \mathrm{F}$, the rate estimated by the above formula must be corrected by a reduction of 10%.

Complete the frament below to compute and display the growth rate.

```
T = input('What is the temperature? ');
% Calculate and display the growth rate of the bacteria
```

```
a = 0.01; % model parameter, ok if student doesn't name this
b = -10; % model parameter, ok if student doesn't name this
if T <= 32
    rate = 0;
else
    rate = a*T^2 + b;
end
% Correct rate if necessary
if (T > 90)
    rate = rate*0.9;
end
fprintf('BAX has growth rate %f\n', rate)
% Any print format is ok
```

Do not write redundant (or useless) if or else branches; we took off points. See examples below.

```
a= 0;
if x<y
        a= rand(1); % OK
elseif x==z
        a= a; % BAD
else
                        % BAD
end
```


Question 4: (20 points)

A unit hexagon centered at (a, b) has vertices

$$
\begin{aligned}
& P_{1}:\left(a+\Delta_{x}, b+\Delta_{y}\right) \\
& P_{2}:\left(a-\Delta_{x}, b+\Delta_{y}\right) \\
& P_{3}:(a-1, b) \\
& P_{4}:\left(a-\Delta_{x}, b-\Delta_{y}\right) \\
& P_{5}:\left(a+\Delta_{x}, b-\Delta_{y}\right) \\
& P_{6}:(a+1, b)
\end{aligned}
$$

where $\Delta_{x}=1 / 2$ and $\Delta_{y}=\sqrt{3} / 2$. Assume that the function $\operatorname{DrawHex}(\mathrm{a}, \mathrm{b})$ adds to the figure window a unit hexagon with center at (a, b).

We say that a unit hexagon is "good" if it is entirely inside a square with vertices $(0,0),(10,0),(10,10)$, and $(0,10)$. Write a program fragment to randomly choose points from a square with vertices $(0,0)$, $(10,0),(10,10)$, and $(0,10)$ - each coordinate is uniformly random in the interval $(0,10)$. Whenever there is a point that can be the center of a good hexagon, draw the hexagon. Your fragment should draw exactly 100 good hexagons. Do not write code to set up the figure window and axes.

```
deltaY = sqrt(3)/2; % OK if student doesn't name a constant
k = 0;
while k < 100
    % Draw the k-th good hexagon
    a = 10*rand(1);
    b = 10*rand(1);
    if 0<=a-1 && a+1<=10 && 0<=b-deltaY && b+deltaY<=10
        % < instead of <= is OK; check a, b separately OK
        DrawHex(a,b)
        k = k+1;
    end
end
% An alternate solution %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for k = 1:100
    a = 10*rand(1);
    b = 10*rand(1);
    while a<1 || a>9 || b<deltaY || b>10-deltaY
        a = 10*rand(1);
        b = 10*rand(1);
    end % Check a and b separately OK
    DrawHex(a,b)
end
```

A unit hexagon has six unit hexagon neighbors with these centers

$$
\left.\begin{array}{l}
H_{1}:\left(a+3 \Delta_{x}, b+\Delta_{y}\right) \\
H_{2}:\left(a, b+2 \Delta_{y}\right) \\
H_{3}:\left(a-3 \Delta_{x}, b+\Delta_{y}\right) \\
H_{4}:\left(a-3 \Delta_{x}, b-\Delta_{y}\right) \\
H_{5}:\left(a, b-2 \Delta_{y}\right) \\
H_{6}
\end{array}\right):\left(a+3 \Delta_{x}, b-\Delta_{y}\right)
$$

where $\Delta_{x}=1 / 2$ and $\Delta_{y}=\sqrt{3} / 2$. Assume that the function $\operatorname{DrawHex}(\mathrm{a}, \mathrm{b})$ adds to the figure window a unit hexagon with center at (a, b).

Complete the fragment below to draw K columns of a "slanted" bee hive. Each column is made up of n unit hexagons. Center the top left hexagon on the origin (0,0). An example with 5 hexagons in each of 3 columns is shown below. Do not write code to set up the figure window and axes.

```
n = input('How many hexagons in each column? ');
K = input('How many columns? ');
% Draw a slanted bee hive with n hexagons in each
% of K columns
% OK if student doesn't name these constants
xdist = 3/2; % x-dist btw hex ctrs in adjacent cols
ydist = sqrt(3); % y-dist btw hex ctrs in a column
deltaY = sqrt(3)/2;
for c = 1:K
    % In column c...
    x = (c-1)*xdist;
    yOffset= - (c-1)*deltaY;
    for r = 1:n
            % The rth hexagon...
            y = yOffset - (r-1)*ydist;
            DrawHex(x,y)
    end
end
```

\% An alternate solution \%
nShift $=0$; \% How many deltaY's to shift down
for $\mathrm{x}=0$: xdist : (K-1)*xdist
ystart = nShift*deltaY;
for $\mathrm{y}=$ ystart : -ydist : ystart-(n-1)*ydist
DrawHex (x,y)
end
nShift = nShift-1;
end

