Name: \qquad
(Legibly print last name, first name, middle name)
NetID: \qquad
Statement of integrity:
I did not, and will not, violate the rules of academic integrity on this exam.
\qquad (Signature)

Q1: (20) \qquad
\qquad
Q2: (10) \qquad
\qquad
Q3: (20) \qquad
Q4: (20) \qquad
Q5: (30) \qquad
Total: (100) \qquad

Circle your lecture time: $\quad 9: 05$ or $11: 15$

Circle your section instructor's name:

	Tuesday	Wednesday
$10: 10$		Utkarsh Prateek
$11: 15$		Tim Condon
$12: 20$	Stefan Ragnarsson	Tim Condon
$1: 25$	Stefan Ragnarsson	Myle Ott
$2: 30$	Josef Broder	Myle Ott
$3: 35$	Josef Broder	Myle Ott
$7: 30$		Vivek Maharajh
$8: 35$		Vivek Maharajh

Instructions:

- This is a 90 -minute, closed-book exam; no calculators are allowed.
- The exam is worth a total of 100 points, so it's about one point per minute!
- Read each problem completely, including any provided code, before starting it.
- Raise your hand if you have any questions.
- Use the backs of pages or ask for additional sheets of paper as necessary.
- Clarity, conciseness, and good programming style count for credit.
- If you supply multiple answers, we will grade only one.
- Use only MATLAB code. No credit for code written in other programming languages.
- Assume there will be no input errors.
- Do not use arrays. Do not write user-defined functions.
- Do not use switch, try, catch, or break statements.
- You may find the following MATLAB predefined functions useful:
abs, sqrt, rem, rand, floor, ceil, input, fprintf, disp
Examples: $\quad \operatorname{rem}(5,2) \rightarrow 1$, the remainder of 5 divided by 2
r and $(1) \rightarrow$ a random real value in the interval $(0,1)$
floor(6.9), floor(6) $\rightarrow 6$, rounds down to the nearest integer $\operatorname{ceil}(8.1)$, $\operatorname{ceil}(9) \rightarrow 9$, rounds up to the nearest integer

Question 1: (20 points)

Part (a): (12 points)
Suppose the following fragment has been executed:

```
% The first interval [a1,b1] has these endpoints:
a1 = rand(1); b1 = a1+rand(1);
% The second interval [a2,b2] has these endpoints:
a2 = rand(1); b2 = a2+rand(1);
% Assume a1, b1, a2, and b2 are unique.
```

(i) Complete the following fragment so that it prints 'Yes' if the second interval is inside the first interval and 'No' otherwise.


```
    disp('Yes')
else
    disp('No')
end
```

(ii) Complete the following fragment so that it prints ' No ' if the the intervals fail to intersect and 'Yes' otherwise.

```
if
    disp('No')
else
    disp('Yes')
end
```

Part (b): (8 points)
Write the loop condition below so that the fragment keeps prompting the user to enter a number until the value entered is positive and is a multiple of 3 or 5 .

```
n = input('Enter a number: ');
while
    n = input('Enter a number: ');
end
```


Question 2: (10 points)

Part (a): (3 points)
What is the last line of output after executing the following fragment?

```
x = 2;
y = x*3;
while x<=6 && y<=6
    x = x + 2;
    disp(x)
end
```

Answer:

Part (b): (7 points)
The following fragment calculates and displays the first few Fibonacci numbers. When the fragment finishes execution, which Fibonacci nubmers are stored in variables f_old, f_cur, and f_new? You can, but don't have to, evaluate the Fibonacci numbers. For example, you can write f_{4} instead of its value 3.

```
n = 2;
f_old = 1 % f(1)
f_cur = 1 % f(2)
for n = 3:5
    f_new = f_old + f_cur
    f_old = f_cur;
    f_cur = f_new;
end
```

f_old: f_cur: f_new:

Question 3: (20 points)

A certain bacteria has a growth rate that is dependent on the ambient temperature. At or below $32^{\circ} \mathrm{F}$, there is no growth. Above $32^{\circ} \mathrm{F}$ the growth rate follows the formula

$$
a T^{2}+b
$$

where T is ambient temperature in ${ }^{\circ} \mathrm{F}$, and $a=0.01$ and $b=-10$ are model parameters. When the temperature is very high, above $90^{\circ} \mathrm{F}$, the rate estimated by the above formula must be corrected by a reduction of 10%.

Complete the frament below to compute and display the growth rate.

```
T = input('What is the temperature? ');
% Calculate and display the growth rate of the bacteria
```


Question 4: (20 points)

A unit hexagon centered at (a, b) has vertices

$$
\begin{aligned}
& P_{1}:\left(a+\Delta_{x}, b+\Delta_{y}\right) \\
& P_{2}:\left(a-\Delta_{x}, b+\Delta_{y}\right) \\
& P_{3}:(a-1, b) \\
& P_{4}:\left(a-\Delta_{x}, b-\Delta_{y}\right) \\
& P_{5}:\left(a+\Delta_{x}, b-\Delta_{y}\right) \\
& P_{6}:(a+1, b)
\end{aligned}
$$

where $\Delta_{x}=1 / 2$ and $\Delta_{y}=\sqrt{3} / 2$. Assume that the function $\operatorname{DrawHex}(\mathrm{a}, \mathrm{b})$ adds to the figure window a unit hexagon with center at (a, b).

We say that a unit hexagon is "good" if it is entirely inside a square with vertices $(0,0),(10,0),(10,10)$, and $(0,10)$. Write a program fragment to randomly choose points from a square with vertices $(0,0)$, $(10,0),(10,10)$, and $(0,10)$ - each coordinate is uniformly random in the interval $(0,10)$. Whenever there is a point that can be the center of a good hexagon, draw the hexagon. Your fragment should draw exactly 100 good hexagons. Do not write code to set up the figure window and axes.

Question 5: (30 points)

A unit hexagon has six unit hexagon neighbors with these centers

$$
\begin{aligned}
& H_{1}:\left(a+3 \Delta_{x}, b+\Delta_{y}\right) \\
& H_{2}:\left(a, b+2 \Delta_{y}\right) \\
& H_{3}
\end{aligned}:\left(a-3 \Delta_{x}, b+\Delta_{y}\right),
$$

where $\Delta_{x}=1 / 2$ and $\Delta_{y}=\sqrt{3} / 2$. Assume that the function $\operatorname{DrawHex}(\mathrm{a}, \mathrm{b})$ adds to the figure window a unit hexagon with center at (a, b).

Complete the fragment below to draw K columns of a "slanted" bee hive. Each column is made up of n unit hexagons. Center the top left hexagon on the origin (0,0). An example with 5 hexagons in each of 3 columns is shown below. Do not write code to set up the figure window and axes.

```
n = input('How many hexagons in each column? ');
K = input('How many columns? ');
% Draw a slanted bee hive with n hexagons in each
% of K columns
```


