CIS1121 Final Exam

Name \qquad
(Legibly print last name, first name, middle name)
NetID: \qquad
Statement of integrity:
I did not, and will not, violate the rules of academic integrity on this exam.
\qquad (Signature)

Circle your lecture time: $\quad 9: 05$ or $11: 15$

Q1: (10) \qquad
Q2: (20) \qquad
Q3: (20) \qquad
\qquad
Q4: (25) \qquad
Q5: (25) \qquad
Total: (100) \qquad

Circle your section number/instructor's name:

	Tuesday	Wednesday
$10: 10$		Sucheta Soundarajan
$11: 15$		Josef Broder
$12: 20$	Sucheta Soundarajan	Josef Broder
$1: 25$	Sucheta Soundarajan	Vivek Maharajh
$2: 30$	Stefan Ragnarsson	Stefan Ragnarsson
$3: 35$	Josef Broder	

Instructions:

- This is a 90 -minute, closed-book exam; no calculators are allowed.
- The exam is worth a total of 100 points, so it's about one point per minute!
- Read each problem completely, including any provided code, before starting it.
- Raise your hand if you have any questions.
- Use the backs of pages or ask for additional sheets of paper as necessary.
- Clarity, conciseness, and good programming style count for credit.
- If you supply multiple answers, we will grade only one.
- Use only MATLAB code. No credit for code written in other programming languages.
- Assume there will be no input errors.
- Write user-defined functions only if asked to do so.
- Do not use switch, try, catch, or break statements.
- You may find the following MATLAB predefined functions useful:
sqrt, rem, floor, ceil, rand, zeros, length, fprintf, disp, plot
Examples: $\quad \operatorname{rem}(5,2) \rightarrow 1$, the remainder of 5 divided by 2
r and $(1) \rightarrow$ a random real value in interval $(0,1)$
ceil(8.1), ceil(9) $\rightarrow 9$, rounds up to the nearest integer
length $\left(\left[\begin{array}{lll}2 & 4 & 8\end{array}\right]\right) \rightarrow 3$, length of a vector

Question 1: (10 points)

Part (a): (4 points)
What will be displayed at the end of each fragment below? If there is an error write the word "error" in the box.

```
w = [2 3];
x = w(w(1))
```

Output

Output

Part (b): (6 points)
What will be printed when the following script is executed?

Script	Function	Output
$\mathbf{a = 2 ;} \mathbf{b = 6 ; ~ c = 3 ;}$	function $\mathbf{a}=\mathbf{z o o (b , c)}$	
d= zoo(c,b);	b= b/c;	
fprintf('a is \%d\n', a);	a= b;	
fprintf('b is \%d\n', b);	fprintf('c is \%d\n', c);	
fprintf('d is \%d\n', d);		

Question 2: (20 points)

Complete each of the functions below according to the specifications. Do not use function find.

Part (a): (10 points)
function $h=$ histData(yr, maj)
$\% \mathrm{~h}$ is the data for drawing a bar graph showing the number of UNDERGRADUATE $\%$ students in each of the 90 majors at Cornell.
$\% \mathrm{yr}$ and maj are vectors of the same length. For a valid index k:
$\% \quad y r(k)$ is the year code of student k. Possible values are integers
in [1..13]; values 1,2,3,4 indicate undergraduate.
$\%$ maj(k) is the major code of student k; possible values are integers
\% in [1..90].
\% Assume that the length of yr (and maj) is greater than 1.
h= zeros(1,90); \% h(i) will be the number of undergrads in major i

```
bar(1:90, h)
title('Number of UNDERGRADUATE students in each major')
```

Part (b): (10 points)
function $s=s m o o t h V e c(v)$
\% Smooth vector v by averaging each "interior" value with its left and right \% neighbors. s is the smoothed vector and is two components shorter than v . \% Example: If $v=\left[\begin{array}{llll}-2 & 5 & 3 & 4\end{array}\right]$ then $s=\left[\begin{array}{lll}2 & 4 & 5\end{array}\right]$
\% Assume that the length of v is greater than 2.

Question 3: (20 points)

Complete each of the functions below according to the specifications. Do not use function find.

Part (a): (6 points)

```
function r = randInt(lo, hi)
% r is a uniformly random INTEGER in [lo..hi].
% lo and hi are integers.
```

Part (b): (14 points)
function ind $=$ myFind(x, v)
\% ind is the index of the first occurrence of value x in vector v. $\%$ If x is not found in v then ind is 0.
$\% \mathrm{x}$ is a scalar. v is a vector with length greater than 1.
\% For full credit your code should be efficient--stop as soon as x is found.

Question 4: (25 points)

Write the function header for the function below. The function name is checkLengths. It has two input parameters, \mathbf{a} and \mathbf{b}, and returns two vectors, shortV and longV.

```
% a and b are vectors with length>1; assume their lengths are different.
% shortv is the shorter vector between a and b
% longV is the longer vector between a and b
if length(a)<length(b)
    shortV= a; longV= b;
else
    shortV= b; longV= a;
end
```

Complete the function below to interleave two vectors. You must use function checkLengths from Part (a) above as part of your solution. Do not use vectorized code!

```
function v = interleave(a,b)
% Interleave the values from vectors a and b to form vector v.
% a and b are vectors with length > 1; assume their lengths are different.
% The first value in v comes from the longer vector of a and b.
% The "leftover" values from the longer vector are copied to the end of v.
% For example, if a=[10 90 30] and b=[l8 4 5 2 4]
% then v=[llllllllllll
% NO VECTORIZED CODE!
```


Question 5: (25 points)

Complete the function below to draw a set of grayscale disks arranged in a triangle. Read the specifications in the function comment. An example figure is shown on the right with $\mathbf{n}=6, \mathbf{s}=0.5$. Assume the availability of function DrawDisk and recall that you can specify a color in Matlab using a vector of length 3 :

```
colr = [1 1 1]; %white
DrawDisk(5,0,1, colr )
```

draws a white disk with radius 1 centered at $(5,0)$. The grid lines and "color values" are shown on the diagram on the right for your
 convenience; you do not have to draw them.

```
function grayness(n,s)
% Draw a triangle of disks; there are n disks on each side of the triangle.
% The disk in row 1 is black [0 0 0]; the disks in row n are white [1 1 1];
% the rows in between vary uniformly in grayness.
% The disks have unit radius and are spaced s units apart.
% The center of the lower left disk is at (0,0).
close all; figure; axis equal; hold on
```

